欢迎来到天天文库
浏览记录
ID:37367801
大小:81.50 KB
页数:7页
时间:2019-05-22
《《2.2.3 等差数列的前n项和(二)》同步练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3《等差数列的前n项和(二)》同步练习课时目标1.熟练掌握等差数列前n项和的性质,并能灵活运用.2.掌握等差数列前n项和的最值问题.3.理解an与Sn的关系,能根据Sn求an.知识梳理1.前n项和Sn与an之间的关系对任意数列{an},Sn是前n项和,Sn与an的关系可以表示为n=1,an=n≥2.2.等差数列前n项和公式Sn=____________=______________.3.等差数列前n项和的最值(1)在等差数列{an}中当a1>0,d<0时,Sn有最________值,使Sn取到最值的n可由不等式组__________确定;当a1<
2、0,d>0时,Sn有最________值,使Sn取到最值的n可由不等式组__________确定.da1-d22(2)因为Sn=n+n,若d≠0,则从二次函数的角度看:当d>0时,Sn有最______2值;当d<0时,Sn有最______值;且n取最接近对称轴的自然数时,Sn取到最值.一个有用的结论:若Sn=an2+bn,则数列{an}是等差数列.反之亦然.作业设计一、填空题2*1.数列{an}的前n项和为Sn,且Sn=n-n,(n∈N),则通项an=________.2.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ,则λ的值是_
3、_______.3.已知数列{a2n}的前n项和Sn=n-9n,第k项满足54、最小角为120°,公差为5°,则凸n边形的边数是________.9.一个等差数列的前10项之和为100,前100项之和为10,则前110项之和是________.10.设{an}是等差数列,Sn是其前n项和,且S5S8,则下列结论正确的是________(只填序号).①d<0;②a7=0;③S9>S5;④S6与S7均为Sn的最大值二、解答题11.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.12.已知等差数列{an}中,记Sn是它的前n项和,若S25、=16,S4=24,求数列{6、an7、}的前n项和Tn.能力提升2*13.数列{an}的前n项和Sn=3n-2n(n∈N),则当n≥2时,Sn、na1、nan从大到小的顺序是________.14.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.反思感悟*1.公式an=Sn-Sn-1并非对所有的n∈N都成立,而只对n≥2的正整数才成立.由Sn求通项公式an=f(n)时,要分n=1和n≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表8、示.2.求等差数列前n项和的最值*(1)二次函数法:用求二次函数的最值方法来求其前n项和的最值,但要注意n∈N,结合二次函数图象的对称性来确定n的值,更加直观.an≥0,an≤0,(2)通项法:当a1>0,d<0,时,Sn取得最大值;当a1<0,d>0,时,an+1≤0an+1≥0Sn取得最小值.3.求等差数列{an}前n项的绝对值之和,关键是找到数列{an}的正负项的分界点.2.2.3等差数列的前n项和(二)答案知识梳理na1+annn-11.S1Sn-Sn-12.na1+d22an≥0an≤03.(1)大小(2)小大an+1≤0an+1≥0作业设计19、.2n-22.-1解析等差数列前n项和Sn的形式为:Sn=an2+bn,∴λ=-1.3.8S1,n=1解析由an=,∴an=2n-10.Sn-Sn-1,n≥2由5<2k-10<8,得7.510、9=S3+3S3=4S3⇒S12=10S3,所S63以=.S12105.19a1
4、最小角为120°,公差为5°,则凸n边形的边数是________.9.一个等差数列的前10项之和为100,前100项之和为10,则前110项之和是________.10.设{an}是等差数列,Sn是其前n项和,且S5S8,则下列结论正确的是________(只填序号).①d<0;②a7=0;③S9>S5;④S6与S7均为Sn的最大值二、解答题11.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.12.已知等差数列{an}中,记Sn是它的前n项和,若S2
5、=16,S4=24,求数列{
6、an
7、}的前n项和Tn.能力提升2*13.数列{an}的前n项和Sn=3n-2n(n∈N),则当n≥2时,Sn、na1、nan从大到小的顺序是________.14.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.反思感悟*1.公式an=Sn-Sn-1并非对所有的n∈N都成立,而只对n≥2的正整数才成立.由Sn求通项公式an=f(n)时,要分n=1和n≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表
8、示.2.求等差数列前n项和的最值*(1)二次函数法:用求二次函数的最值方法来求其前n项和的最值,但要注意n∈N,结合二次函数图象的对称性来确定n的值,更加直观.an≥0,an≤0,(2)通项法:当a1>0,d<0,时,Sn取得最大值;当a1<0,d>0,时,an+1≤0an+1≥0Sn取得最小值.3.求等差数列{an}前n项的绝对值之和,关键是找到数列{an}的正负项的分界点.2.2.3等差数列的前n项和(二)答案知识梳理na1+annn-11.S1Sn-Sn-12.na1+d22an≥0an≤03.(1)大小(2)小大an+1≤0an+1≥0作业设计1
9、.2n-22.-1解析等差数列前n项和Sn的形式为:Sn=an2+bn,∴λ=-1.3.8S1,n=1解析由an=,∴an=2n-10.Sn-Sn-1,n≥2由5<2k-10<8,得7.510、9=S3+3S3=4S3⇒S12=10S3,所S63以=.S12105.19a1
10、9=S3+3S3=4S3⇒S12=10S3,所S63以=.S12105.19a1
此文档下载收益归作者所有