欢迎来到天天文库
浏览记录
ID:37355609
大小:405.02 KB
页数:4页
时间:2019-05-22
《2011中考原题分类训练29概率(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、分类训练29概率一、选择题:(每小题3分)1.下列事件中,为必然事件的是(D)A.购买一张彩票,中奖B.打开电视机.正在播放广告。C.抛一牧捌币,正面向上.D.一个袋中装有5个黑球,从中摸出一个球是黑球.2.下列事件属于必然事件的是(A)A.在1个标准大气压下,水加热到100ºC沸腾B.明天我市最高气温为56ºCC.中秋节晚上能看到月亮D.下雨后有彩虹3.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是(B)A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概率为4.在一个不透明的口袋中,装有5个红
2、球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( C)A. B. C.D.5.一个不透明的盒子中装有2个白球、5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为(B)A.B.C.D.6.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是(B)A.0B.C.D.17.一枚质地均匀的正方体骰子,其六面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是(C)A.B.C.D.8.如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是
3、(D )A.B.C.D.1236789.如图,是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字。如果同时转动两个转盘各一次(指针落在等分线上重转),当转盘停止后,则指针指向的数字和为偶数的概率是(C)A.B.C.D.二、填空题:10.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是.11.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色,形状、大小质地等完全相同。小明通过多次摸球实验后发现其中摸到红色、黑色的频率稳定在某种程度5%和15%,则口袋中白色球的个数很可能是
4、16个.12.同时掷两个质地均匀的骰子.观察向上一面的点数,两个骰子的点数相同的概率为.三、解答题:13.(7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生;⑵抽取2名,恰好是1名男生和1名女生.解:⑴抽取1名,恰好是女生的概率是.⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足
5、抽取2名,恰好是1名男生和1名女生(记为事件A)的结果共6种,所以P(A)=.14.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口。(1)试用树状图或列表法中的一种列举出这两中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率。解:(1)根据题意,可以画出出如下的“树形图”:∴这两辆汽乖行驶方向共有9种可能的结果.(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=白黄红白白白白黄白红黄黄白黄黄黄红红红白红黄
6、红红15.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.解:列表如下:则P(两次都摸到红球)=-112小宇小静16.(本小题满分8分)如图,一转盘被等分成三个扇形,上面分别标有关-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).⑴若小静转动转盘一次,求得到负数的概率;⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋
7、而合”,用列表法(或画树形图)求两人“不谋而合”的概率.解:⑴P(得到负数)=⑵用下表列举所有的可能结果:从上表可知,一共有九种可能,其中两人得到的数相同的有三种,因此P(两人“不谋而合”)=17.(本题10分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同。(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球。求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅均后,
此文档下载收益归作者所有