大一上高数期末考试题

大一上高数期末考试题

ID:37295534

大小:404.55 KB

页数:5页

时间:2019-05-21

大一上高数期末考试题_第1页
大一上高数期末考试题_第2页
大一上高数期末考试题_第3页
大一上高数期末考试题_第4页
大一上高数期末考试题_第5页
资源描述:

《大一上高数期末考试题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、大一上高数期末考试一、单项选择题(本大题有4小题,每小题4分,共16分)1.设f(x)cosx(xsinx),则在x0处有().f(0)2f(0)1f(0)0f(x)(A)(B)(C)(D)不可导.1x3设(x),(x)33x,则当x1时()2.1x.(x)与(x)(x)与(x)(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(x)(x)(x)(x)(C)是比高阶的无穷小;(D)是比高阶的无穷小.x3.F(x)0(2tx)f(t)dtf(x)(1,1)若,其中在区间上二阶可导且f(x)0,则().F(x)(A)函数必在

2、x0处取得极大值;F(x)(B)函数必在x0处取得极小值;F(x)(0,F(0))yF(x)(C)函数在x0处没有极值,但点为曲线的拐点;F(x)(0,F(0))yF(x)(D)函数在x0处没有极值,点也不是曲线的拐点。1设f(x)是连续函数,且f(x)x2f(t)dt,则f(x)()4.022xx2(A)2(B)2(C)x1(D)x2.二、填空题(本大题有4小题,每小题4分,共16分)2lim(13x)sinx5.x0.cosxcosx已知是f(x)的一个原函数,则f(x)dx6.xx.2222n1lim(coscoscos)7.n

3、nnnn.122xarcsinx1dx211x-8.2.三、解答题(本大题有5小题,每小题8分,共40分)xyy(x)y(0)yy(x)esin(xy)19.设函数由方程确定,求以及.71x求7dx.x(1x)10.xxe,x01设f(x)求f(x)dx.232xx,0x111.1g(x)f(xt)dtlimf(x)A12.设函数f(x)连续,0,且x0x,A为常数.求g(x)g(x)并讨论在x0处的连续性.1y(1)13.求微分方程xy2yxlnx满足9的解.四、解答题(本大题10分)14.已知上半平面内一曲

4、线yy(x)(x0),过点(0,1),且曲线上任一点M(x,y)yxx00处切线斜率数值上等于此曲线与x轴、轴、直线0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)ylnxylnx15.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x=e旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)16.设函数f(x)在0,1上连续且单调递减,证明对任意的q[0,1],q1f(x)dxqf(x)dx00.f(x)dx0f(x)cosxdx017.设函数f(x)在0,

5、上连续,且0,0.证明:在0,内至少存在两个不同的点1,2,使f(1)f(2)0.(提xF(x)f(x)dx示:设0)解答一、单项选择题(本大题有4小题,每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)1cosx26()c5.e.6.2x.7.2.8.3.三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导xye(1y)cos(xy)(xyy)0xyeycos(xy)y(x)xyexcos(xy)x0,y0y(0)1,7610.解:ux7xdxdu1(

6、1u)112原式du()du7u(1u)7uu11(ln

7、u

8、2ln

9、u1

10、)c71727ln

11、x

12、ln

13、1x

14、C77101x2f(x)dxxedx2xxdx11.解:33001x2xd(e)1(x1)dx3000xx2xee3cosd(令x1sin)232e14f(0)0g(0)012.解:由,知。xf(u)du1xtu0g(x)f(xt)dtx(x0)0xxf(x)f(u)du0g(x)(x0)2xxf(u)duf(x)A0g(0)lim

15、lim2x0xx02x2xxf(x)f(u)duAA0limg(x)limAx0x0x222g(x),在x0处连续。dy2ylnx13.解:dxx22dxdxyex(exlnxdxC)112xlnxxCx39111y(1),C0yxlnxx9,39四、解答题(本大题10分)xy2ydxy14.解:由已知且0,y2yy将此方程关于x求导得2特征方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。