函数的概念与表示

函数的概念与表示

ID:37252202

大小:737.50 KB

页数:7页

时间:2019-05-20

函数的概念与表示_第1页
函数的概念与表示_第2页
函数的概念与表示_第3页
函数的概念与表示_第4页
函数的概念与表示_第5页
资源描述:

《函数的概念与表示》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中部(新窗口教育)理念:激发兴趣,挖掘潜力,培优教育【★最新版本】第二章函数一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。(2)象与原象:如果给定一个从集合A到集合B的映射,那么集合A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。2、函数(1)函数的定义①原始定义:设在某变

2、化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫作自变量。②近代定义:设A、B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中,原象集合A叫做函数的定义域,象集合C叫做函数的值域。(2)构成函数概念的三要素①定义域②对应法则③值域3、函数的表示方法①解析法②列表法③图象法注意:强调分段函数与复合函数的表示形式。二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数

3、的字母连结而成的式子叫解析式,解析式亦称“解析表达式”或“表达式”,简称“式”。(注意分段函数)求函数解析式的方法:(1)定义法(2)变量代换法(3)待定系数法(4)函数方程法(5)参数法(6)实际问题2、函数的定义域:要使函数有意义的自变量x的取值的集合。求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。3。复合函

4、数定义域:已知f(x)的定义域为,其复合函数的定义域应由不等式解出。三、函数的值域1.函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。-----------------------------------------------------------------------------------------------------------------『王牌数学』15891396058029--88328521www.feng666.org地址:高新一路23号新纪元配楼二层2

5、01室内部资料,翻印必究高中部(新窗口教育)理念:激发兴趣,挖掘潜力,培优教育【★最新版本】2.确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。3.求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二

6、次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的值域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用不等式的性质求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧几何意义法:由数形结合,转化距离等求值域。四.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为奇函数。如果函数是奇函数或偶函数,则称函数y=具有奇偶性。2.性质:①函数具有

7、奇偶性的必要条件是其定义域关于原点对称,②y=f(x)是偶函数y=f(x)的图象关于轴对称,  y=f(x)是奇函数y=f(x)的图象关于原点对称,③偶函数在定义域内关于原点对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同,④偶函数无反函数,奇函数的反函数还是奇函数,⑤若函数f(x)的定义域关于原点对称,则它可表示为一个奇函数与一个偶函数之和⑥奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]⑦对于F(x)=f[g(x)]:若g(x)是偶函数,则F(x)

8、是偶函数若g(x)是奇函数且f(x)是奇函数,则F(x)是奇函数若g(x)是奇函数且f(x)是偶函数,则F(x)是偶函数3.奇偶性的判断①看定义域是否关于原点对称     ②看f(x)与f(-x)的关系五、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。