2015初中数学--几何证明题

2015初中数学--几何证明题

ID:37108900

大小:434.06 KB

页数:15页

时间:2019-05-20

2015初中数学--几何证明题_第1页
2015初中数学--几何证明题_第2页
2015初中数学--几何证明题_第3页
2015初中数学--几何证明题_第4页
2015初中数学--几何证明题_第5页
资源描述:

《2015初中数学--几何证明题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、几何证明题1、(2015福州)如图①,在锐角△ABC中,D、E分别为AB、BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.15几何证明题2、(2015•益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1

2、PP2的度数;(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.15几何证明题3、15几何证明题15几何证明题15几何证明题6、(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=60°,OM=4,OQ=1,求证:CN⊥OB.(2)当点N在边OB上运动时,

3、四边形OMPQ始终保持为菱形.①问:﹣的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.15几何证明题15几何证明题8、(2015丹东)15几何证明题15几何证明题1、(2015福州)解:(1)证明:∵DM∥EF,∴∠AMD=∠AFE.∵∠AFE=∠A,∴∠AMD=∠A.∴DM=DA.(2)证明:∵∠DGB=180º-∠B-∠BDG,∠A=180º-∠B-∠C,∠BDG=∠C,∴∠DGB=∠A.∵∠A=∠AFE,∴∠DGB=∠AFE.∵∠DGE=180º-∠DGB,∠

4、EFC=180º-∠AFE,∴∠DGE=∠EFC.又∵DE是中位线,∴DE∥AC.∴∠DEB=∠C.∴△DEG∽△ECF.(3)提示:如答图,由△BDG∽△BED,得,由△EFH∽△ECF,得.由BD=DA=DM=EF,且BE=EC,得EH=BG=1.15几何证明题2、(12分)(2015•益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.(1)如图1,当α=90°时,求∠P1PP2的度数;(2)如图2,当点P2在AP1的延长

5、线上时,求证:△P2P1P∽△P2PA;(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.考点:几何变换综合题.分析:(1)利用旋转的性质以及等腰直角三角形得出∠APP1=∠BPP2=45°,进而得出答案;(2)根据题意得出△PAP1和△PBP2均为顶角为α的等腰三角形,进而得出∠P1PP2=∠PAP2=α,求出△P2P1P∽△P2PA;(3)首先连结QB,得出Rt△QBE≌Rt△QBF,利用∠P1PQ=180°﹣∠APP1﹣∠QPB求出即可.解答:(1)解:由旋转的性质得:

6、AP=AP1,BP=BP2.∵α=90°,∴△PAP1和△PBP2均为等腰直角三角形,∴∠APP1=∠BPP2=45°,∴∠P1PP2=180°﹣∠APP1﹣∠BPP2=90°;(2)证明:由旋转的性质可知△PAP1和△PBP2均为顶角为α的等腰三角形,∴∠APP1=∠BPP2=90°﹣,∴∠P1PP2=180°﹣(∠APP1+∠BPP2)=180°﹣2(90°)=α,在△PP2P1和△P2PA中,∠P1PP2=∠PAP2=α,又∵∠PP2P1=∠AP2P,∴△P2P1P∽△P2PA.15几何证明题(3)证明:如图,连接QB.∵l1,l2分别为PB

7、,P2B的中垂线,∴EB=BP,FB=BP2.又BP=BP2,∴EB=FB.在Rt△QBE和Rt△QBF中,,∴Rt△QBE≌Rt△QBF,∴∠QBE=∠QBF=∠PBP2=,由中垂线性质得:QP=QB,∴∠QPB=∠QBE=,由(2)知∠APP1=90°﹣,∴∠P1PQ=180°﹣∠APP1﹣∠QPB=180°﹣(90°﹣)=90°,即P1P⊥PQ.点评:此题主要考查了几何变换综合以及相似三角形的判定和全等三角形的判定与性质等知识,得出Rt△QBE≌Rt△QBF是解题关键.28.(10分)(2015•无锡)如图,C为∠AOB的边OA上一点,OC=

8、6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。