资源描述:
《2019届高考数学复习平面解析几何第三节圆的方程课时作业》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三节圆的方程课时作业A组——基础对点练1.方程x2+y2+2x-4y-6=0表示的图形是( )A.以(1,-2)为圆心,为半径的圆B.以(1,2)为圆心,为半径的圆C.以(-1,-2)为圆心,为半径的圆D.以(-1,2)为圆心,为半径的圆解析:由x2+y2+2x-4y-6=0得(x+1)2+(y-2)2=11,故圆心为(-1,2),半径为.答案:D2.若圆C的半径为1,圆心C与点(2,0)关于点(1,0)对称,则圆C的标准方程为( )A.x2+y2=1 B.(x-3)2+y2=1C.(x-1)2+y2=1D.x2+(y-3)2=1解析:因
2、为圆心C与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C(0,0),所以所求圆的标准方程为x2+y2=1.答案:A3.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为( )A.x2+(y-2)2=5B.(x-2)2+y2=5C.x2+(y+2)2=5D.(x-1)2+y2=5解析:因为所求圆的圆心与圆(x+2)2+y2=5的圆心(-2,0)关于原点(0,0)对称,所以所求圆的圆心为(2,0),半径为,故所求圆的方程为(x-2)2+y2=5.答案:B4.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则
3、P
4、Q
5、的最小值为________.解析:如图所示,圆心M(3,-1)到定直线x=-3上点的最短距离为
6、MQ
7、=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:45.(2018·唐山一中调研)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________.解析:设圆上任意一点为(x1,y1),中点为(x,y),则,即,代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.答案:(x-2)2+(y+1)2=16.已知圆C经过点(0,1),且圆心为C(1,2).(1)写出圆C的标准
8、方程;(2)过点P(2,-1)作圆C的切线,求该切线的方程及切线长.解析:(1)由题意知,圆C的半径r==,所以圆C的标准方程为(x-1)2+(y-2)2=2.(2)由题意知切线斜率存在,故设过点P(2,-1)的切线方程为y+1=k(x-2),即kx-y-2k-1=0,则=,所以k2-6k-7=0,解得k=7或k=-1,故所求切线的方程为7x-y-15=0或x+y-1=0.由圆的性质易得所求切线长为==2.7.(2018·南昌二中检测)在平面直角坐标系xOy中,经过函数f(x)=x2-x-6的图象与两坐标轴交点的圆记为圆C.(1)求圆C的方程;(2)求
9、经过圆心C且在坐标轴上截距相等的直线l的方程.解析:(1)设圆的方程为x2+y2+Dx+Ey+F=0,函数f(x)=x2-x-6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0),由,解得,所以圆的方程为x2+y2-x+5y-6=0.(2)由(1)知圆心坐标为(,-),若直线经过原点,则直线l的方程为5x+y=0;若直线不过原点,设直线l的方程为x+y=a,则a=-=-2,即直线l的方程为x+y+2=0.综上可得,直线l的方程为5x+y=0或x+y+2=0.B组——能力提升练1.已知圆x2+y2-4ax+2by+b2=0(a>0,b>0)关于
10、直线x-y-1=0对称,则ab的最大值是( )A.B.C.D.解析:由圆x2+y2-4ax+2by+b2=0(a>0,b>0)关于直线x-y-1=0对称,可得圆心(2a,-b)在直线x-y-1=0上,故有2a+b-1=0,即2a+b=1≥2,解得ab≤,故ab的最大值为,故选B.答案:B2.(2018·绵阳诊断)圆C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2-=1的渐近线截得的弦长为,则圆C的方程为( )A.x2+(y-1)2=1B.x2+(y-)2=3C.x2+(y+1)2=1D.x2+(y+)2=3解析:依题意得,题中的双曲线的一条渐近线
11、的斜率为,倾斜角为60°,结合图形(图略)可知,所求的圆C的圆心坐标是(0,1)、半径是1,因此其方程是x2+(y-1)2=1,选A.答案:A3.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=2解析:由题意知x-y=0和x-y-4=0之间的距离为=2,所以r=.又因为y=-x与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由y=-x和x-
12、y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C的标准方程为(x-1)