《平稳时间序列模型》PPT课件

《平稳时间序列模型》PPT课件

ID:37006695

大小:898.60 KB

页数:68页

时间:2019-05-10

《平稳时间序列模型》PPT课件_第1页
《平稳时间序列模型》PPT课件_第2页
《平稳时间序列模型》PPT课件_第3页
《平稳时间序列模型》PPT课件_第4页
《平稳时间序列模型》PPT课件_第5页
资源描述:

《《平稳时间序列模型》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第12章平稳时间序列模型1前言在前面的章节中,模型的被解释变量都假定只受各个解释变量当期值的影响。但我们知道,在现实中很多被解释变量除了受解释变量当期值的影响外,还不可避免地受到解释变量滞后值的影响,这就是所谓分布滞后模型,或者前若干期的值决定了当期值,即自回归模型。这一类模型要求数据具有平稳性,本章将讨论平稳时间序列模型。2§12.1分布滞后模型一、分布滞后模型的含义以消费函数为例,假定某人的年薪增加了10000人民币,而且这一年薪的增加将一直保持下去。那么,这种收入的增加将会对个人的年消费支出产生什么影响呢?在得到收入的

2、“永久性”增加后,人们通常不会急于把全部增加的收入一次性全部花完。比方说,收入增加者可能在收入增加后的第1年增加消费3000元,第2年增加2000元,第3年增加1000元,把所余的部分用于储蓄。到第3年末,此人的年消费支出将增加6000元。因而我们可以把此人的消费函数写成(12.1.1)式:(12.1.1)3像(12.1.1)式这样的模型,如果时间序列模型中不仅包含解释变量的当期值,而且包括解释变量的滞后值,就把这种模型称之为分布滞后模型(Distributed-lagModel),也称之为滞后变量模型。更一般地,我们把分布

3、滞后模型写成(12.1.2)式:(12.1.2)如果k是有限的,称模型(12.1.2)为有限分布滞后模型;如果k是无限的,称模型(12.1.2)为无限分布滞后模型。4分布滞后模型的几个基本概念1.短期乘数(Impactmultiplier)系数表示x在当期一个单位的变化,导致y的同期变化值,因此称为短期或即期乘数。2.中期乘数(Intermediatemultiplier)如果此后x的变化都保持在同一水平上,则给出下期y的变化,给出再下期y的变化,以此类推,这部分系数的和称为中期乘数。3.长期乘数(Long-runmulti

4、plier)(12.1.3)称之为长期乘数或总分布滞后乘数(Totaldistributed-lagmultiplier)。5对分布滞后模型系数的假定通常在讨论分布滞后模型时,总是假定:(12.1.4)这一假定的经济学含义是:其一,解释变量x对被解释变量y的长期影响是有限的;其二,x的滞后时间越长,对y的当期影响逐渐衰减。6进一步,我们定义:(12.1.5)βi*是βi对的标准化,给出某一时期的冲击效应占长期冲击或总冲击(即总滞后乘数)的比例。7以(12.1.1)式为例短期乘数为0.3,表示短期消费倾向(MPC),而长期乘数

5、为0.6(0.6=0.3+0.2+0.1)表示长期消费倾向。也就是说,随着收入增加1元,该消费者将在收入增加的当年提高他的消费水平约0.3元,第二年再提高0.2元,第三年再提高0.1元,即1元收入的增加对消费的长期效应就是0.6元。如果我们将(12.1.1)的每一个βi除以0.6,就分别得到0.5,0.33和0.17,这表明x的一个单位变化的总效应有50%在当期反映,第二期为33%,第三期为17%。(12.1.1)8二、滞后效应产生的原因1.心理性因素由于受到心理预期的影响,经济主体的大多数决策行为都会表现出滞后性。主要原因

6、是人们受自身习惯的影响,往往不能快速调整自己的行为来适应新的环境。2.时滞性因素例如,由于“蛛网效应”的存在,农产品供给量对价格的波动表现出时滞;从研究与开发(R&D)的投入到生产效率的提高,中间也涉及到相当长的时滞。3.制度性因素管理制度、合同等制度性因素也会导致滞后效应。例如,一个消费者如果其存款结构中定期存款占了较大比例,他要想改变理财计划,或者调整自己的消费水平,就会受到银行有关存款制度的限制。9三、分布滞后模型的估计方法分布滞后模型估计的困难对于有限分布滞后模型,外生滞后变量模型的估计原则上可以使用OLS法。但是在

7、具体应用中还是存在一些实际问题:其一,解释变量x的最大滞后阶数k如何确定?如果k设定不正确,将带来模型的设定偏误问题。其二,滞后期数越长,自由度越小,这将导致模型估计不准或无法估计,并可能导致统计推断失效。其三,即使样本足够大,即使不考虑自由度问题,由于x的各期之间往往是高度相关的,因而也可能遇到滞后解释变量观测值之间存在的多重共线性问题。对于无限分布滞后模型,由于x的最大滞后阶数k是无限的,因此,直接应用OLS无法估计无限分布滞后模型。101.阿尔特—丁伯根(Alt-Tinbergen)估计法为了确定解释变量x的最大滞后期

8、k,阿尔特和丁伯根提出了所谓顺序估计法。其基本思路是:在假定随机扰动项满足经典假设的前提下,首先做yt对xt的回归,然后做yt关于xt和xt-1的回归,再做yt关于xt、xt-1和xt-2的回归,依次添加的滞后项,直到滞后阶数不显著或至少有一个滞后阶数的系数改变符号时为止。阿尔特—丁伯根估

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。