《精彩的分形》教案

《精彩的分形》教案

ID:36947270

大小:345.00 KB

页数:9页

时间:2019-04-30

《精彩的分形》教案_第1页
《精彩的分形》教案_第2页
《精彩的分形》教案_第3页
《精彩的分形》教案_第4页
《精彩的分形》教案_第5页
资源描述:

《《精彩的分形》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《精彩的分形》教案我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。一、分形几何与分形艺术什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身

2、上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。"分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。M

3、andelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统

4、几何学的挑战。 图 1Mandelbrot集合 图 2Mandelbrot集合局部放大 图3Mandelbrot集合局部放大用数学方法对放大区域进行着色处理,这些区域就变成一幅幅精美的艺术图案,这些艺术图案人们称之为"分形艺术"。"分形艺术"以一种全新的艺术风格展示给人们,使人们认识到该艺术和传统艺术一样具有和谐、对称等特征的美学标准。这里值得一提的是对称特征,分形的对称性即表现了传统几何的上下、左右及中心对称。同时她的自相似性又揭示了一种新的对称性,即画面的局部与更大范围的局部的对称,或说局部与整体的对称。这种对称不同于欧几里德几何的对称,而是大小比例的对

5、称,即系统中的每一元素都反映和含有整个系统的性质和信息。这一点与上面所讲的例子:"一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息",完全吻合。不管你是从科学的观点看还是从美学的观点看,她都是那么富有哲理,她是科学上的美和美学上的美的有机结合。二、复平面中的神奇迭代Mandelbrot集合是Mandelbrot在复平面中对简单的式子Z<-Z^2+C进行迭代产生的图形。虽然式子和迭代运算都很简单,但是产生的图形出现那么丰富多样的形态及精细结构简直令人难以置信以至于不可思议。在传统几何学中难以找到如此简单的规律隐藏着如此复杂而生动的例子。Mandelbr

6、ot集合告诉我们自然界中简单的行为可以导致复杂的结果。例如,大型团体操中每个人穿的衣服只有几种颜色中的一种,每个人的动作也只是导演规定的几种之一。但是整体上可以显示出多种多样的复杂形态。Julia集合在复平面上,水平的轴线代表实数,垂直的轴线代表虚数。每个Julia集合(有无限多个点)都决定一个常数C,它是一个复数。现在您在复平面上任意取一个点,其值是复数Z。将其代入下面方程中进行反复迭代运算:就是说,用旧的Z自乘再加上C后的结果作为新的Z。再把新的Z作为旧的Z,重复运算。 当你不停地做,你将最后得到的Z值有3种可能性:1、Z值没有界限增加(趋向无穷)2、Z

7、值衰减(趋向于零)3、Z值是变化的,即非1或非2趋向无穷和趋向于零的点叫定常吸引子,很多点在定常吸引子处结束,被定常吸引子所吸引。非趋向无穷和趋向于零的点是"Julia集合"部分,也叫混沌吸引子。问题是我们怎样才能让计算机知道哪一个点是定常吸引子还是"Julia集合"。一般按下述算法近似计算:n=0;while((n++=Rmax属于

8、这种情况的点相当于"1、Z值没有界限增加(趋向无穷)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。