《3.2 独立性检验的基本思想及其初步应用》导学案2

《3.2 独立性检验的基本思想及其初步应用》导学案2

ID:36947028

大小:98.50 KB

页数:8页

时间:2019-04-29

《3.2 独立性检验的基本思想及其初步应用》导学案2_第1页
《3.2 独立性检验的基本思想及其初步应用》导学案2_第2页
《3.2 独立性检验的基本思想及其初步应用》导学案2_第3页
《3.2 独立性检验的基本思想及其初步应用》导学案2_第4页
《3.2 独立性检验的基本思想及其初步应用》导学案2_第5页
资源描述:

《《3.2 独立性检验的基本思想及其初步应用》导学案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《3.2独立性检验的基本思想及其初步应用》导学案2【课标要求】1.了解独立性检验的基本思想、方法及其简单应用;2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤.【核心扫描】1.能够根据题目所给数据列出列联表及求K2.(重点)2.独立性检验的基本思想和方法.(难点)自学导引1.分类变量和列联表(1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表①定义:列出的两个分类变量的频数表,称为列联表.②2×2列联表一般地,假设两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频

2、数列联表(称2×2列联表)为y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d想一想:如何理解分类变量?提示(1)这里的“变量”和“值”都应作为“广义”的变量和值来理解.例如:对于性别变量,其取值有“男”和“女”两种,这里的“变量”指的是“性别”,这里的“值”指的是“男”或“女”.因此,这里说的“变量”和“值”不一定是取具体的数值.(2)分类变量是大量存在的.例如:吸烟变量有吸烟与不吸烟两种类别,而国籍变量则有多种类别.2.独立性检验定义利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验公式K2=,其中n=a+b+c+d具体步

3、骤①根据实际问题的需要,确定容许推断“两个分类变量有关系”犯错误概率的上界α.然后查表确定临界值k0②利用公式计算随机变量K2的观测值k③如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”3.独立性检验临界值表P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828想一想

4、:在K2运算时,在判断变量相关时,若K2的观测值k=56.632,则P(K2≥6.635)≈0.01和P(K2≥10.828)≈0.001,哪种说法是正确的?提示两种说法均正确.P(K2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下,认为两变量相关;而P(K2≥10.828)≈0.001的含义是在犯错误的概率不超过0.001的前提下,认为两变量相关.名师点睛1.在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此ad-bc越小,关系越弱;ad-bc越大,关系越强.2.独立性检验的基本思想(1)独立性检验的基本思想类似于

5、反证法,要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系”成立,在该假设下我们构造的随机变量K2应该很小,如果由观测数据计算得到的K2的观测值很大,则在一定程度上说明假设不合理,根据随机变量K2的含义,可以通过P(K2≥6.635)≈0.01来评价假设不合理的程度,由实际计算出k≥6.635,说明假设不合理的程度约为99%,即“两个分类变量有关系”这一结论成立的可信程度约为99%.(2)在实际问题中要记住以下几个常用值:①k>6.635有99%的把握认为“X与Y有关系”;②k>3.841有95%的把握认

6、为“X与Y有关系”;③k>2.706有90%的把握认为“X与Y有关系”;④k≤2.706就认为没有充分证据显示“X与Y有关系”.(3)反证法原理与独立性检验原理的比较反证法原理:在假设H0下,如果推出一个矛盾,就证明了H0不成立.独立性检验原理:在假设H0下,如果出现一个与H0相矛盾的小概率事件,就推断H0不成立,且该推断犯错误的概率不超过这个小概率.3.两个分类变量相关性检验方法利用独立性检验来考察两个分类变量是否有关系,能较精确地给出这种判断的可靠程度,具体的做法是:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界

7、值k0.②计算随机变量K2的观测值k.③如果k≥k0,就推断“X与Y”有关系,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.题型一有关“相关的检验”【例1】某校对学生课外活动进行调查,结果整理成下表:试用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?体育文娱总计男生212344女生62935总计275279[思路探索]可用数据计算K2,再确定其中的具体关系.解判断方法如下:假设H0“喜欢体育还是

8、喜欢文娱与性别没有关系”,若H0成立,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。