欢迎来到天天文库
浏览记录
ID:36880759
大小:443.31 KB
页数:20页
时间:2019-05-10
《外力场中自由粒子的分布·玻尔兹曼分布》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.6外力场中自由粒子的分布·玻尔兹曼分布按照分子混沌性假设,处于平衡态的气体其分子数密度n处处相等,但这仅在无外力场条件下才成立。若分子受到重力场、惯性力场等作用,气体分子数密度将有一定的空间分布,这类分布均可看作玻尔兹曼分布的某种特例。§2.6.1等温大气压强公式*悬浮微粒按高度分布●因为大气中存在十分复杂的流动,因而大气压强变化十分复杂。(一)等温大气压强公式(isothermalbarometricformula●现假设大气是等温的且处于平衡态,则大气温度随高度变化是怎样的?●现考虑在大气中垂
2、直高度为z到z+dz,面积为A的一薄层气体●该系统达到平衡的条件为大气温度随高度增加减少的关系(对流层中)dp=-(z)gdz由理想气体方程可得=pMm/RT,代入设大气温度处处相等,重力加速度g不随高度变。●对上式积分,则有●其中p(0)及p(z)分别为高度0及z处大气压强。●把它改写为气体分子数密度随高度分布公式,则(二)等温大气标高中的kT/mg具有高度的量纲。定义大气标高H●因指数上量纲为1,故●大气标高的物理意义为:(1)在高度z=H处的大气压强为z=0处大气压强的1/e。(2)设把整个大气分
3、子都压缩为环绕地球表面的、其密度与海平面处大气密度相等的一层假想的均匀大气层,则这一层大气的厚度也是H。(3)大气标高是粒子按高度分布的特征量,它反映了气体分子热运动与分子受重力场作用这一对矛盾。●这一对矛盾的相互协调形成稳定的大气压强分布。●可以想像,一旦热运动停止,大气中所有分子都会像砂粒一样落到地面.*§2.6.2旋转体中悬浮粒子径向分布超速离心技术台风、飓风、龙卷风在如图的实验装置中,发现竖直管中水面上升h高度。现以水平管中距旋转中心轴r到r+dr的一段气体作为研究对象。●设其中气体的密度为,而管的
4、横截面积A.在整个管中处处均匀。●这段气体的质量为现分析它的受力情况,惯性离心力方向沿径向向外又●达到平衡时应有●因●故●积分后可得(二)超速离心技术与同位素分离●该式可用于分离大分子、病毒、DNA及其它微粒,也可用于测量微粒的质量。●超速离心机转速可在25r/s到数万r/s之间改变,从而使悬浮在液体中的微粒或大分子所受到的惯性离心力可远大于重力。●在十分大的惯性离心力作用下,不同质量粒子组成的混合物将在径向被很明显地分离开。●例如,若旋转半径为6cm,转速为103r/s,则惯性离心力加速度可达6000g。
5、●正因为在超速离心力作用下分离效果较明显,因而这种方法也被广泛地应用于同位素分离,获得浓缩铀,而逐渐替代泻流法分离同位素.(三)台风、飓风、龙卷风●台风(热带风暴)是指:在处于热带的北太平洋西部洋面上局部积聚的湿热空气大规模上升至高空过程中,周围低层空气乘势向中心流动,在此过程中将出现沿地球径向运动的速度分量。在科里奥利力的作用下形成空气旋涡,.这就称为台风或热带风暴。●气流旋转使台风中心(称为台风眼)气压很低,低气压使云层裂开变薄,有时可见到日月星光。惯性离心力将云层推向四周,形成高耸的壁,狂风、暴雨均发
6、生在台风眼之外。台风的直径一般为几百公里,最大可达1000km。●在东太平洋和大西洋形成的“热带风暴”被称为飓风。●龙卷风也是一种猛烈的气旋。但龙卷风直径仅几米到几百米,它生消迅速。由于气流的旋转性很强,中心气压很低,常将地面的水、尘土、泥沙夹卷而上,可拔树、掀屋面,故破坏力强§2.6.3玻尔兹曼分布(Bortzmanndistribution)(1)回转气体中粒子数密度沿径向的分布(2)等温大气重力场中分布公式(1)式与(2)式十分类同,所不同的仅是将(-mv2r2/2kT)代替了重力势能mgz。●注意到
7、回转体在作宏观运动。前面已指出,力学注意物体的外部表现(机械运动),而热学注意其内部运动(热运动)。故热学不考虑整体的宏观运动,若有宏观运动,其坐标系应取在运动系统上.注意到m2r就是坐标系取在回转体上的惯性离心力,它是一种保守力,而保守力所作负功等于势能的增加设在r=0处的势能为Ep(0)=0,则在r=r处的势能指数上是粒子的惯性离心力势能与kT之比的负值●接下来看麦克斯韦速度分布●其指数上是粒子动能与kT比的负值。●这三种分布都是按粒子能量ε的分布,它们都有一个称为“玻尔兹曼因子”的因子,因而这两种不
8、同状态可分别为:在重力势能的两种不同状态;在分子动能的两种不同状态;在粒子惯性离心力势能的两种不同状态上。●从这三种分布,可归纳出这一规律,这些分布中都有,称为玻尔兹曼因子。●具有玻尔兹曼因子的分布,称为玻尔兹曼分布(Bortzmanndistribution)●在温度为T的系统中,处于粒子能量为1的某一状态的粒子数密度为n1,处于粒子能量为2的另一状态上的粒子数密度为n2。玻尔兹曼分布可表示为●因为同一能量
此文档下载收益归作者所有