《极大线性无关组》PPT课件

《极大线性无关组》PPT课件

ID:36788797

大小:466.60 KB

页数:25页

时间:2019-05-10

《极大线性无关组》PPT课件_第1页
《极大线性无关组》PPT课件_第2页
《极大线性无关组》PPT课件_第3页
《极大线性无关组》PPT课件_第4页
《极大线性无关组》PPT课件_第5页
资源描述:

《《极大线性无关组》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3.4节向量组的极大 线性无关组线性代数主要内容:一.等价向量组二.向量组的极大线性无关组三.向量组的秩与矩阵秩的关系一、等价向量组定义1:如果向量组中的每一个向量都可以由向量组线性表示,那么就称向量组A可以由向量组B线性表示。若同时向量组B也可以由向量组A线性表示,就称向量组A与向量组B等价。即自反性:一个向量组与其自身等价;对称性:若向量组与等价,则和等价;传递性:等价向量组的基本性质定理:设与是两个向量组,如果(2)则向量组必线性相关。推论1:如果向量组可以由向量组线性表示,并且线性无关,那么推

2、论2:两个线性无关的等价的向量组,必包含相同个数的向量。(1)向量组线性表示;可以由向量组二、向量组的极大线性无关组定义2:注:(1)只含零向量的向量组没有极大无关组.简称极大无关组。对向量组A,如果在A中有r个向量满足:(2)任意r+1个向量都线性相关。(如果有的话)线性无关。(1)那么称部分组为向量组的一个极大线性无关组。(2)一个线性无关向量组的极大无关组就是其本身.(3)一个向量组的任一向量都能由它的极大无关组线性表示.例如:在向量组中,首先线性无关,又线性相关,所以组成的部分组是极大无关组。还

3、可以验证也是一个极大无关组。注:一个向量组的极大无关组一般不是唯一的。极大无关组的一个基本性质:任意一个极大线性无关组都与向量组本身等价。又,向量组的极大无关组不唯一,而每一个极大无关组都与向量组等价,所以:向量组的任意两个极大无关组都是等价的。由等价的线性无关的向量组必包含相同个数的向量,可得一个向量组的任意两个极大无关组等价,且所含向量的个数相同。定理:三、向量组的秩与矩阵秩的关系定义3:向量组的极大无关组所含向量的个数称为这个向量组的秩,记作例如:向量组的秩为2。向量组的秩(4)等价的向量组必有相

4、同的秩。关于向量组的秩的结论:(1)零向量组的秩为0。(2)向量组线性无关向量组线性相关(3)如果向量组可以由向量组线性表示,则注:两个有相同的秩的向量组不一定等价。两个向量组有相同的秩,并且其中一个可以被另一个线性表示,则这两个向量组等价。2.矩阵的秩2.1.行秩、列秩、矩阵的秩把矩阵的每一行看成一个向量,则矩阵可被认为由这些行向量组成,把矩阵的每一列看成一个向量,则矩阵可被认为由这些列向量组成。定义4:矩阵的行向量的秩,就称为矩阵的行秩;矩阵的列向量的秩,就称为矩阵的列秩。例如:矩阵的行向量组是可以

5、证明,是A的行向量组的一个极大无关组,因为,由即可知即线性无关;而为零向量,包含零向量的向量组线性相关,线性相关。所以向量组的秩为3,所以矩阵A的行秩为3。矩阵A的列向量组是可以验证线性无关,而所以向量组的一个极大无关组是所以向量组的秩是3,所以矩阵A的列秩是3。定理:矩阵的行秩=矩阵的列秩定义5:矩阵的行秩=矩阵的列秩,统称为矩阵的秩。记为r(A),或rankA,或秩A。推论:矩阵的初等变换不改变矩阵的秩。解:看行秩例1:求上三角矩阵的秩2.2矩阵秩的求法.看的线性相关性:线性无关,维数增加后得到的依

6、然线性无关,而与都线性相关,所以矩阵的秩=行向量组的秩=3=非零行的行数结论:行阶梯形矩阵的秩=非零行的行数求矩阵秩的方法:把矩阵用初等行变换变成行阶梯形矩阵,则行阶梯形矩阵中非零行的行数就是原来矩阵的秩。例2:求A的秩。由阶梯形矩阵有三个非零行可知求向量组的秩、极大无关组的步骤.(1)向量组作列向量构成矩阵A。(2)初等行变换(行最简形矩阵)r(A)=B的非零行的行数(3)求出B的列向量组的极大无关组(4)A中与B的列向量组的极大无关组相对应部分的列向量组即为A的极大无关组。例3:向量组求向量组的秩和

7、一个极大无关组。解:又因为B的1,2,5列是B的列向量组的一个极大无关组所以,是的一个极大无关组。考虑:是否还有其他的极大无关组?与例4:求向量组的一个极大无关组,并把其余向量用该极大无关组线性表示。解:设则B的1,2列为极大无关组,且所以为所求的一个极大无关组,且

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。