资源描述:
《2014-2015选修2-1-3课时提升作业(二十六) 3.2.2》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(二十六)空间向量与垂直关系(30分钟 50分)一、选择题(每小题3分,共18分)1.若平面α,β的法向量分别为n1=(2,-3,5),n2=(-3,1,-4),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确【解析】选C.因为n1·n2=2×(-3)+(-3)×1+5×(-4)≠0,所以n1与n2不垂直,又≠≠,所以α与β相交但不垂直.新
2、课
3、标
4、第
5、一
6、网2.(2014·青岛高二检测)如图所示,在正方体ABCD-A1B1C1D1中,O是底
7、面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线NO,AM的位置关系是( )A.平行B.相交C.异面垂直D.异面不垂直【解析】选C.建立坐标系如图,设正方体的棱长为2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),=(-1,0,-2),=(-2,0,1),·=0,则直线NO,AM的位置关系是异面垂直.3.(2014·丹东高二检测)已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是( )A.(1,-1,1)B.C.D.【解析】选B.对于选项A,=(1,0,1),则·n=(1,0,1)·(3,
8、1,2)=5≠0,故排除A;对于选项B,=,则·n=·(3,1,2)=0,故B正确,验证可知C,D均不满足·n=0.4.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则直线CE垂直于( )A.AC B.BD C.A1D D.A1A【解析】选B.如图所示,建立直角坐标系Dxyz,设AB=1,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),E(,,1),所以=(,-,1),=(-1,1,0),=(-1,-1,0),=(-1,0,-1),=(0,0,-1),所以·=0,所以⊥,即CE⊥BD.5.(2014·桂林高二检测)如图所
9、示,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( )A.EF至多与A1D,AC之一垂直B.EF⊥A1D,EF⊥ACC.EF与BD1相交D.EF与BD1异面【解析】选B.以D点为坐标原点,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,0,1),=(-1,0,-1),=(-1,1,0),=,=(-1,-1,1),=-,·=·=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.6.下列命题中,正
10、确命题的个数为( )①若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥β;②若n1,n2分别是平面α,β的法向量,则α⊥β⇔n1·n2=0;③若n是平面α的法向量,a与α共面,则n·a=0;④若两个平面的法向量不垂直,则这两个平面一定不垂直.A.1 B.2 C.3 D.4【解析】选C.命题①中平面α,β可能平行,也可能重合;结合平面法向量的概念,易知命题②③④正确.二、填空题(每小题4分,共12分)7.若向量a=(-1,2,-4),b=(2,-2,3)是平面α内的两个不共线的向量,直线l的一个方向向量m=(2,3,1),则l与α的位置关系是 (填“垂直”“平行
11、”“相交但不垂直”).【解析】m·a=(2,3,1)·(-1,2,-4)=-2+6-4=0,m·b=(2,3,1)·(2,-2,3)=4-6+3=1≠0.所以l与α相交但不垂直.答案:相交但不垂直8.已知点A,B,C的坐标分别为(0,1,0),(-1,0,1),(2,1,1),点P的坐标为(x,0,z),若⊥,⊥,则点P的坐标为 .【解析】因为=(-1,-1,1),=(2,0,1),=(-x,1,-z),由·=0,·=0,得则x=,z=-,所以P.答案:9.(2014·长春高二检测)已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-
12、1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是 .【解析】由于·=-1×2+(-1)×2+(-4)×(-1)=0,·=4×(-1)+2×2+0×(-1)=0,所以①②③正确.答案:①②③三、解答题(每小题10分,共20分)10.(2014·广州高二检测)用向量方法证明:如果两个相交平面与第三个平面垂直,则它们的交线也与第三个平面垂直.【解析】已知:如