等差数列求和

等差数列求和

ID:36713175

大小:306.50 KB

页数:9页

时间:2019-05-14

等差数列求和_第1页
等差数列求和_第2页
等差数列求和_第3页
等差数列求和_第4页
等差数列求和_第5页
资源描述:

《等差数列求和》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.1 等差数列的前n项和(一)项目内容课题2.3.1 等差数列的前n项和(一)(共1课时)修改与创新教学目标一、知识与技能掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.二、过程与方法通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.三、情感态度与价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自

2、信心,增强学生学好数学的心理体验,产生热爱数学的情感.教学重、难点教学重点等差数列的前n项和公式的理解、推导及应用.教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题.教学准备多媒体课件教学过程导入新课教师出示投影胶片1:印度泰姬陵(TajMahal)是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征.第9页共9页陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案

3、中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)生只要计算出1+2+3+…+100的结果就是这些宝石的总数.师对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事.教师出示投影胶片2:高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5050.”教师问:“你是如何算出答案的?”高斯回答说:因为1+100

4、=101;2+99=101;…;50+51=101,所以101×50=5050.师这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生第9页共9页高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5050.师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结

5、果.作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.师问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?生这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和.师对,这节课我们就来研究等差数列的前n项的和的问题.推进新课[合作探究]师我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢?生这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和

6、就好首尾配成对了.师高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢?生有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是.第9页共9页师妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+…+21,21+20+19+…+1,对齐相加(其中下第二行的式子与第一行的式子恰好是倒序)这实质上就是我们数学中一种求和的重要方法——“倒序相加法”.现在我将求和问题一般化:(1)求1到n的正整数之和

7、,即求1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由学生轻松解决)(2)如何求等差数列{an}的前n项的和Sn?生1对于问题(2),我这样来求:因为Sn=a1+a2+a3+…+an,Sn=an+an-1+…+a2+a1,再将两式相加,因为有等差数列的通项的性质:若m+n=p+q,则am+an=ap+aq,所以.(Ⅰ)生2对于问题(2),我是这样来求的:因为Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+…+[a1+(n-1)×d],所以S

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。