欢迎来到天天文库
浏览记录
ID:36643443
大小:1.44 MB
页数:63页
时间:2019-05-13
《贝叶斯动态线性模型介绍及常量模型分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、中山大学硕士学位论文贝叶斯动态线性模型介绍及常量模型分析姓名:周均扬申请学位级别:硕士专业:概率论与数理统计指导教师:何远江2003.5.16论文题目:贝叶斯动态线性模型介绍及常量模型分析专业:概率论与数理统计硕士生:周均扬指导教师:何远江教授摘要/本文是在M.West和J.Harrison的作品BayesianForecastingandDynamicmodels(1989年的第一版【3】和1997年的第二版141)以及张孝令教授等的作品《贝叶斯动态模型及其预测》(【35】)的研究成果基础上,对贝叶斯动态模型的一些理论进行研究。主
2、要考虑的是简单的常量模型,它是动态模型的一个重要的子类,包含了古典时间序列模型,它的一些重要的结果有助于对更~般的动态线性模型的研究。对于动态模型的计算,【3】、t4l、[35】等文献提出了方法辛在本文中,提出一种方差估计的计算方法计算常量模型,这种方法是先利用掌握到的数据估计常量模型的观测方程和状态方程的误差的方差,然后利用递推方法计算。方差的估计提出两种方法:一种是利用朴素的极大似然思想的估计方法,另外一种是数值的估计方法。最后对这两种方法与文献【3】、[41、[35】等提出的折扣因子方法进行了数据模拟比较。在模拟中,方差估计的
3、方法采用三种方式计算:固定观察方程误差方差V,用似然方法估计状态方程误差方差w;应用极大似然方法估计方差V和w和用数值方法计算方差V和w:而折扣因子方法采用两种标准选择折扣因子计算。/数据模拟的结果表明:在均方误差的衡量条件下,对常量模型的数据,应用方差估计的方法得到的拟合和一步预测的效果比折扣因子的方法的效果好。在方差估计的计算方法的三种方式中,应用极大似然方法估计两个方差V和w的计算效果最好;其次是用数值方法计算方差V和w的计算方法;固定方差V,用极大似然法估计方差w,然后利用递推关系计算的效果是三者中最差的,推测出现这种情况的
4、原因是附加了约束条件。另外,给出观测方程和状态方程误差的方差的置信区域和假设检验的结果。在文献【3】、f35】对常量模型的收敛性有介绍,[41则迸一步讨论推广的常量模型的收敛性。本文在他们的研究基础上,对推广的常量模型的收敛性进行讨论,得到一些结果(定理4.4),定理4.3的结果纠正了[41中的一个小错误。通过推导发现推广的常量模型是我们常见的古典线性回归模型的推广。本文讨论的结果可以作为贝叶斯动态模型理论的一个补充。目前讨论的模型都是简单的常量模型,对于复杂的多变量的线性模型没有讨论,但是推测它们也会有类似的性质。毒、关键字贝叶斯
5、统计,贝叶斯动态模型、常量模型、折扣贝叶斯模型、极大似然估计、数值估计’Title:IntroduceofBayesianDynamicLinearModelAndtheConstantModelAnalysisMajor:ProbabilityandMathematicStatisticsName:ZhouJunyangSupervisor:Prof.HeYuanjiangAbstractThispapfit"discussestheBayesiandynamicmodeltheory,whichisbasedtheresults
6、ofM.WestandJ.Harrison’sbooks:BayesianForecastinganddynamicmode妇(thefirstandthesecondedition)andProfessorZhangXiaoling’sbook:BayesianDynamicModelanditsForecasting.Itmainlyconsiders也esimplestmedel,theConstantmedel,whichistheimportantsubsetoftheDynamicmedels,includingthee
7、ntireclassicaltimeseriesmodeIs.SomeresultsoftheconstantmodelwilldohelptheresearchofthegeneralDynamiclinearmodels.Aboutthecomputingmethodsofthedynamicmodels,theliterature【3】,【4】and【35】allsubmittedthecomputingmethods.Inthispaper,itgivesanewcomputingmetbodabouttheconstant
8、model.弛methodfirst、黼thedatatoestinmtethevariancesoftheerrorsoftheobservationsequationandthesystemequations,andthenuse
此文档下载收益归作者所有