欢迎来到天天文库
浏览记录
ID:36533714
大小:730.30 KB
页数:35页
时间:2019-05-11
《两类差分方程的稳定性》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、üa©§½5ïÄ)6¶:4wwÆ!;:êÆ!A^êÆïÄ:©§½5nØ:Ǥm:2012c4HÆïÄ)ÆØ©M5`²ïĤJ.é©ïÄóÑ z<Ú8N,þ®3©¥®²(ª5².(²{Æ(Jòd<«ú.ö¶:FÏ:HÆïÄ)ÆØ©¦^ÇÖ5üa©§½56X<3HÆôÖƬt/a¬tÆÏm,3e¤
2、Ƭt/a¬tÆØ©.Ø©ïĤJ8HƤk,Ø©ïÄSNر٦ü¶ÂuL.<)HÆ'u!¦^ÆØ©5½,Ó¿Æ3¿k'ÜxØ©E<Ú>f,#NØ©Ú/<ÇHÆ,±æ^K<½Ù¦EÃãØ©,±úmuLةܽܩSN.ö¶:FÏ:¶:FÏ:HÆa¬ÆØ©üa©§½5ÁXêO!OÅÆ!&EÆ!gÄEâïÄ+×uÐ,3、^©§½5nØ,ïÄüa©§")½5ÚìC½5.©©±enÙ:4、1ÙXØ,{0©ïĵگK.1ÙÌ?ØXe/ªÃ¢©§Xixi+1=g(xi)−ai,jfi−j(xj)i∈Nj=−∞xj=Φj−∞5、y(s−r))s=k0")ìC½5Úؽ5,Ù¥y(k)∈X,X´Banachm;g(.)´½Â3Z2×Xr−1→Xþ¼ê,f(.)´½Â3Z×Xr+1→Xþ¼ê.3¼êf(k,.)÷v^e,í2")½Úؽ'(J,Óѽ5¯KA^.'cµ©§;â;Volterralѧ;½;ìC½;ؽ;BanachmiHÆa¬ÆØ©TheStabilityforSolutionsofTwoClassesofDifferenceEquationsAbstractFollowedbytheswiftdevelopm6、entoftheresearchworldsconcerningnumericalcalculation,computerscience,informationscience,auto-controltechnologyandsoon,manymathematicmodelsdescribedbydifferenceequationswasarose,whichmeansthattheresearchaboutthestabilityofdifferenceequationswithdelayslookslikein7、creasinglyimportant.Thepresentpaperemploystheclassicalnotionsinstability,proceedsomecertainadvancementconcerningtheinitialdifferenceequations,anddiscusstheconditiontothezerostabilityofthetwoclassesoftheequations.Thethesisisdividedintothreesectionsaccordingtoco8、ntents.Chapter1Inpreference,weintroducethemaincontentsofthispaper.Chapter2Inchapter2,Weconsiderthestabilityofthefollowingclassofdiffer-enceequationswithinfinitedelays:Xixi+1=g(xi)−ai,jfi−j(xj)i∈Nj=−∞xj=Φj−∞9、ballyasymptoticallystable,whichimprovethestabilityconditionsaboutthelinearandnonlinearequations.Becausetheequationisinfinitedelayone,theinitialdataΦj,−∞
3、^©§½5nØ,ïÄüa©§")½5ÚìC½5.©©±enÙ:
4、1ÙXØ,{0©ïĵگK.1ÙÌ?ØXe/ªÃ¢©§Xixi+1=g(xi)−ai,jfi−j(xj)i∈Nj=−∞xj=Φj−∞5、y(s−r))s=k0")ìC½5Úؽ5,Ù¥y(k)∈X,X´Banachm;g(.)´½Â3Z2×Xr−1→Xþ¼ê,f(.)´½Â3Z×Xr+1→Xþ¼ê.3¼êf(k,.)÷v^e,í2")½Úؽ'(J,Óѽ5¯KA^.'cµ©§;â;Volterralѧ;½;ìC½;ؽ;BanachmiHÆa¬ÆØ©TheStabilityforSolutionsofTwoClassesofDifferenceEquationsAbstractFollowedbytheswiftdevelopm6、entoftheresearchworldsconcerningnumericalcalculation,computerscience,informationscience,auto-controltechnologyandsoon,manymathematicmodelsdescribedbydifferenceequationswasarose,whichmeansthattheresearchaboutthestabilityofdifferenceequationswithdelayslookslikein7、creasinglyimportant.Thepresentpaperemploystheclassicalnotionsinstability,proceedsomecertainadvancementconcerningtheinitialdifferenceequations,anddiscusstheconditiontothezerostabilityofthetwoclassesoftheequations.Thethesisisdividedintothreesectionsaccordingtoco8、ntents.Chapter1Inpreference,weintroducethemaincontentsofthispaper.Chapter2Inchapter2,Weconsiderthestabilityofthefollowingclassofdiffer-enceequationswithinfinitedelays:Xixi+1=g(xi)−ai,jfi−j(xj)i∈Nj=−∞xj=Φj−∞9、ballyasymptoticallystable,whichimprovethestabilityconditionsaboutthelinearandnonlinearequations.Becausetheequationisinfinitedelayone,theinitialdataΦj,−∞
5、y(s−r))s=k0")ìC½5Úؽ5,Ù¥y(k)∈X,X´Banachm;g(.)´½Â3Z2×Xr−1→Xþ¼ê,f(.)´½Â3Z×Xr+1→Xþ¼ê.3¼êf(k,.)÷v^e,í2")½Úؽ'(J,Óѽ5¯KA^.'cµ©§;â;Volterralѧ;½;ìC½;ؽ;BanachmiHÆa¬ÆØ©TheStabilityforSolutionsofTwoClassesofDifferenceEquationsAbstractFollowedbytheswiftdevelopm
6、entoftheresearchworldsconcerningnumericalcalculation,computerscience,informationscience,auto-controltechnologyandsoon,manymathematicmodelsdescribedbydifferenceequationswasarose,whichmeansthattheresearchaboutthestabilityofdifferenceequationswithdelayslookslikein
7、creasinglyimportant.Thepresentpaperemploystheclassicalnotionsinstability,proceedsomecertainadvancementconcerningtheinitialdifferenceequations,anddiscusstheconditiontothezerostabilityofthetwoclassesoftheequations.Thethesisisdividedintothreesectionsaccordingtoco
8、ntents.Chapter1Inpreference,weintroducethemaincontentsofthispaper.Chapter2Inchapter2,Weconsiderthestabilityofthefollowingclassofdiffer-enceequationswithinfinitedelays:Xixi+1=g(xi)−ai,jfi−j(xj)i∈Nj=−∞xj=Φj−∞9、ballyasymptoticallystable,whichimprovethestabilityconditionsaboutthelinearandnonlinearequations.Becausetheequationisinfinitedelayone,theinitialdataΦj,−∞
9、ballyasymptoticallystable,whichimprovethestabilityconditionsaboutthelinearandnonlinearequations.Becausetheequationisinfinitedelayone,theinitialdataΦj,−∞
此文档下载收益归作者所有