欢迎来到天天文库
浏览记录
ID:36311015
大小:810.00 KB
页数:17页
时间:2019-05-09
《切线长定理课件 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、切线长定理认知准备问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?·O·O·OP·P·P·A问题2、经过圆外一点P,如何作已知⊙O的切线?O。ABP认知准备思考:假设切线PA已作出,A为切点,则∠OAP=90°,连接OP,可知A在怎样的圆上?问题2、经过圆外一点P,如何作已知⊙O的切线?过⊙O外一点作⊙O的切线O·PABO一、切线长定义经过圆外一点做圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。·OPAB定理形成切线与切线长的区别与联系:(1)切线是一条与圆相切的直线;(2)切线长是指切线上某一点与切点间的线段的长。若从⊙O外的一点引
2、两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。APO。BPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。二、切线长定理APO。B几何语言:反思:切线长定理为证明线段相等、角相
3、等提供了新的方法我们学过的切线,常有五个性质:1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于过切点的半径;4、经过圆心垂直于切线的直线必过切点;5、经过切点垂直于切线的直线必过圆心。6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。六个APO。BM若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分ABAPO。B若延长PO交
4、⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴PC=PC∴△PCA≌△PCB∴AC=BCC随堂训练(2)观察OP与BC的位置关系,并给予证明。(1)若OA=3cm,∠APB=60°,则PA=______.PABCOM如图,AC为⊙O的直径,PA、PB分别切⊙O于点A、B,OP交⊙O于点M,连结BC。例1.PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,A
5、B⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(5)写出图中所有的等腰三角形△ABP△AOB(6)若PA=4、PD=2,求半径OA(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPC。PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。例2.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长
6、.(2)如果∠P=46°,求∠COD的度数C·OPBDAE·OABCDEF选做题:如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、B为切点,若BC=9,AD=4,求OE的长.知识拓展2.已知:两个同心圆PA、PB是大圆的两条切线,PC、PD是小圆的两条切线,A、B、C、D为切点。求证:AC=BD·PABOCD1.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。小结:APO。BECD∵PA、PB分别切⊙O于A、B∴PA=PB,∠OPA=∠OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直
7、关系提供了理论依据。必须掌握并能灵活应用。
此文档下载收益归作者所有