2.2.2 第1课时 平行四边形的判定定理1、2

2.2.2 第1课时 平行四边形的判定定理1、2

ID:36309192

大小:1.38 MB

页数:31页

时间:2019-05-09

2.2.2 第1课时 平行四边形的判定定理1、2_第1页
2.2.2 第1课时 平行四边形的判定定理1、2_第2页
2.2.2 第1课时 平行四边形的判定定理1、2_第3页
2.2.2 第1课时 平行四边形的判定定理1、2_第4页
2.2.2 第1课时 平行四边形的判定定理1、2_第5页
资源描述:

《2.2.2 第1课时 平行四边形的判定定理1、2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、优翼课件导入新课讲授新课当堂练习课堂小结第1课时平行四边形的判定定理1,22.2.2平行四边形的判定学练优八年级数学下(XJ)教学课件第2章四边形学习目标1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;(重点)2.掌握平行四边形的判定定理1和2,能根据不同条件灵活选取适当的判定定理进行推理论证.(难点)数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?情景引入导入新课只要使互相平行的夹在铁轨之间的枕木长相等就可以了那这是为什么呢?会不会跟我们学过的平行四边形有关呢

2、?问题我们知道,两组对边分别平行或相等的四边形是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?猜想1:一组对边相等的四边形是平行四边形.讲授新课一组对边平行且相等的四边形是平行四边形一等腰梯形不是平行四边形,因而此猜想错误.猜想2:一组对边平行的四边形是平行四边形.梯形的上下底平行,但不是平行四边形,因而此猜想错误.BA活动如图,将线段AB向右平移BC长度后得到线段DC,连接AD,BC,由此你能猜想四边形ABCD的形状吗?DC四边形ABCD是平行四边形猜想3:一组对边平行且相等的四边形是平行四边形.你能证明吗?ABCD证明思路作对

3、角线构造全等三角形一组对应边相等两组对边分别相等四边形ABCD是平行四边形如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.证一证ABCD21证明:连接AC.∵AB∥CD,∴∠1=∠2.在△ABC和△CDA中,AB=CD,AC=CA,∠1=∠2,∴△ABC≌△CDA(SAS),∴BC=DA.又∵AB=CD,∴四边形ABCD是平行四边形.一组对边平行且相等的四边形是平行四边形.∵AB=CD,AB∥CD∴四边形ABCD是平行四边形.几何语言:平行四边形判定定理1BDCA总结归纳典例精析证明:∵四边形ABCD是平行四边形,∴AB=CD,EB//

4、FD.又∵EB=AB,FD=CD,∴EB=FD.∴四边形EBFD是平行四边形.例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.例2如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△ACE和△DBF中,AC=DB,∠A=∠D,AE=DF,∴△ACE≌△DBF(SAS),∴CE=BF,∠ACE=∠DBF,∴CE∥BF,∴四边形BFCE是平行四边形.【变式题】如图,点C是AB的中

5、点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE,CD=BE,AC=CB,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.练一练1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是(  )A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=A

6、DD.AB=CD,BC=ADC猜想观看视频,将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?两组对边分别相等的四边形是平行四边形二你能根据平行四边形的定义证明它们吗?已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.ABCD连接AC,在△ABC和△CDA中,AB=CD(已知),BC=DA(已知),AC=CA(公共边),∴△ABC≌△CDA(SSS)∴∠1=∠4,∠2=∠3,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.证明:1423证一证两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC∴

7、四边形ABCD是平行四边形.几何语言:平行四边形判定定理2BDCA总结归纳例3如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.证明:Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN,∴四边形PONM是平行四边形.典例精析例4如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解:∵△ABD和△FBC都是等边三角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。