《用频率估计概率》课件

《用频率估计概率》课件

ID:36257924

大小:979.00 KB

页数:18页

时间:2019-05-07

《用频率估计概率》课件_第1页
《用频率估计概率》课件_第2页
《用频率估计概率》课件_第3页
《用频率估计概率》课件_第4页
《用频率估计概率》课件_第5页
资源描述:

《《用频率估计概率》课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、用频率估计概率必然事件不可能事件可能性0½(50%)1(100%)不可能事件随机事件必然事件随机事件(不确定事件)回顾必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0

2、列举法可以求一些事件的概率,我们还可以利用多次重复试验,通过统计实验结果去估计概率.什么叫频率?在实验中,每个对象出现的次数与总次数的比值叫频率材料:在重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动.随着抛掷次数的增加,一般的,频率呈现一定的稳定性:在0.5左右摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何变化?数学史实事实上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总

3、是在一个固定数的附近摆动,显示出一定的稳定性.瑞士数学家雅各布·伯努利(1654-1705被公认为是概率论的先驱之一,他最早阐明了随着试验次数的增加,频率稳定在概率附近.归纳:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么事件A发生的概率P(A)=p.用频率估计的概率可能小于0吗?可能大于1吗?投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率()练习:下表记录了一名球员在罚球线上的投篮结果.(1)计算表中的投中频率(精确到0.

4、01);(2)这个球员投篮一次,投中的概率大约是多少?(精确到0.1)0.560.600.520.520.4920.5070.502约为0.5某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈你的看法.估计移植成活率移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8

5、830.9050.897是实际问题中的一种概率,可理解为成活的概率.估计移植成活率由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为_____.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897由下表可以发现,幼树移

6、植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为_____.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.林业部门种植了该幼树1000棵,估计能成活_______棵.2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部

7、门购买约_______棵.900556估计移植成活率51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定

8、价为多少元比较合适?为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?概率伴随着我你他1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于25

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。