2.4.2抛物线的几何性质

2.4.2抛物线的几何性质

ID:36184584

大小:1.65 MB

页数:15页

时间:2019-05-06

2.4.2抛物线的几何性质_第1页
2.4.2抛物线的几何性质_第2页
2.4.2抛物线的几何性质_第3页
2.4.2抛物线的几何性质_第4页
2.4.2抛物线的几何性质_第5页
资源描述:

《2.4.2抛物线的几何性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2章圆锥曲线与方程2.4.2抛物线的几何性质结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,y∈R.关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点.(4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。

2、PF

3、=x0+p/2xOyFP通径的长度:2p思考:通径是抛物线的焦点弦中最短的弦吗?特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一

4、条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.p越大,开口越开阔图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)x≥0y∈Rx≤0y∈Ry≥0x∈Ry≤0x∈R(0,0)x轴y轴1例题例1.顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程,例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my

5、(m≠0)),可避免讨论y2=4x焦点弦的长度方程图形范围对称性顶点焦半径焦点弦的长度y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0y∈Rx≤0y∈Rx∈Ry≥0y≤0x∈RlFyxO关于x轴对称关于x轴对称关于y轴对称关于y轴对称(0,0)(0,0)(0,0)(0,0)yOxBA1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是.2、一个正三角形的三个顶点,都在抛物线上,其中一个顶点为坐标原点,则这个三角形的面积为。例4、已知直线l:x=2p与抛物线=2px(

6、p>0)交于A、B两点,求证:OA⊥OB.证明:由题意得,A(2p,2p),B(2p,-2p)所以=1,=-1因此OA⊥OB推广1若直线l过定点(2p,0)且与抛物线=2px(p>0)交于A、B两点,求证:OA⊥OB.xyOy2=2pxABL:x=2pC(2p,0)xyOy2=2pxABlC(2p,0)证明:设l的方程为y=k(x-2p)或x=2p所以OA⊥OB.代入y2=2px得,可知又直线l过定点(2p,0)推广2:若直线l与抛物线=2px(p>0)交于A、B两点,且OA⊥OB,则__________xyOy2=2pxABlC(2p,0)验证:由得所以直线l的方程为即而因为OA⊥O

7、B,可知推出,代入得到直线l的方程为所以直线过定点(2p,0).小结:1.掌握抛物线的几何性质:范围、对称性、顶点、离心率、通径;2.会利用抛物线的几何性质求抛物线的标准方程、焦点坐标及解决其它问题.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。