欢迎来到天天文库
浏览记录
ID:36128387
大小:33.50 KB
页数:7页
时间:2019-05-06
《巧借信息技术优化数学教学(论文)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、巧借信息技术优化数学教学初中数学32团中学袁文娣189996168737巧借信息技术优化数学教学[摘要]教学源于探索,探索更是课堂教学的过程。利用多媒体,开启学生思维闸门,激发联想,激励探索,是培养学生创新精神,创造性思维能力提高课堂教学质量的有效途径。本文试图就多媒体技术在初中数学教学中所体现的优越性,多媒体辅助数学教学的原则,如何将多媒体技术与传统教学有机融合,以及使用多媒体数学教学中应注意的几个问题。从真正意义上达到用多媒体来指导教学,使课堂变得生动形象,学生的学习兴趣达到最大限度的发挥等。总之提高数学教学质量是最终的目的。[关键字]巧借信息技术整合优化
2、数学教学初中数学与信息技术的整合,是从数学教学的需要出发,确定哪些环节,哪些教学内容适合使用现代信息技术,并选用合适的软件,创造相应的学习环境,推进现代信息技术在数学中的辅助教学,达到优化数学教学的作用。一、巧借信息技术的交互性,激发学生学习数学的兴趣和充分体现学生的主体作用。71、人机交互是多媒体计算机的显著特点,多媒体计算机可以产生出一种新的图文声色并茂的、感染力强的人机交互方式,而且可以立即反馈。这种交互方式对于数学教学过程具有重要意义,它能有效地激发学生的学习兴趣,使学生产生强烈的学习欲望,因而形成学习动机。题组训练是数学课堂教学的一个重要环节,传统的
3、方法是点几位学生(或自愿)到黑板上演板,完毕后教师再讲评强调。人机交互则会出现另一片天地。用flafh制成题组训练课件,学生笔算后,选择正确答案。若答对了,窗口立即弹出激励性文字:“你答对了,真了不起!”若答错了,窗口马上显示“你答错了,请再试一次!”只至出现正确结果,万一三次尝试失败,则显示解题步骤。这样处理,学生学习兴趣浓,效率高。若在网络教室上课,每个学生都有参入机会,老师也能从服务器上迅速查出答题的正误率,借此调整自己的教学方式。2、人机交互有利于发挥学生的主体作用,有利于激发学生自主学习的积极性。传统的数学教学,教师是主宰,学生是配角,从教学内容、教
4、学方法、教学步骤,甚至练习作业都是教师事先安排好的,学生只能被动参入这个过程。而优秀的多媒体课件所提供的交互式学习环境中,学生可以按照自己的学习基础,学习兴趣来选择所学的内容的深浅,来选择适合自己水平的练习作业。7初中数学复习课或习题课,特别适合人机交互的学习环境,因为初中数学教师完全有能力制作这类课件,从前置知识复习,精选例题讲解,到巩固练习作业,每一教学环节都可以设置成不同的层次,学生根据自身情况,选择性地进入相应层次,当然还有机会进入高一层次。这种交互性所提供多种的主动参与活动,就为学生的主动性、积极性的发挥创造了良好的条件,从而使学生能真正体现出学习主
5、体作用。二、巧借信息技术提供的外部刺激的多样性,有利于学生对数学知识的获取与保持。信息技术提供的外部刺激是多种感官的综合刺激,它既能看得见(视觉),听得着(听觉),还能用手操作(触觉),这种多样性的刺激,比单一地听老师讲解强得多。同时信息技术的丰富性、交互性、形象性、生动性、可控性、参入性大大强化这种感官刺激,非常有利于知识的获取和保持。1、化无形为有形。初中数学理性知识成分太重,传统的教学只片面强调逻辑思维训练,缺乏充分的图形支持,缺乏供学生探索的环境,于是只能靠学生的死记和教师的说教了。比如,初三几何“点的轨迹”,学生最终会知识“轨迹”是一些直线或射线,但
6、学生对“轨迹”是毫无想象力的。《几何画板》能有效地解决这一问题,它显示的“点”一步步地动态有形地组成直线或射线,旁边还能显示轨迹中“点”的条件,这种动态的有形的图形是十分完整的,清晰的,它远远超出老师“把轨迹比喻成流星的尾巴”。2、化抽象为直观。初中数学的概念教学是教学中的难点,学生几乎被动地从教师那里接受数学概念,只有靠强化记忆知道概念的共性和本质特征。初三代数“函数”7,就是一个典型的概念教学,关键是让学生对“对于x的每一个值,y都有唯一值与它对应”,有一个明晰直观的印象。运用多媒体的直观特性,分别显示解析式y=x+1,<<数学用表>>中的平方表,天气昼夜
7、变化图象,用声音、动画等形式直观地显示“对于x的每一个值,y都有唯一值与它对应”,最后播放三峡大坝一期蓄水时的录相,引导学生把水位设为y,时间设为x,就形成了y与x的函数关系。不仅引起学生的自豪感,而且对函数概念理解非常透彻。3、化静止为运动。运动的几何图形更加有效地刺激大脑视觉神经元,产生强烈的印象。初中几何《圆》这一章,各知识点都是动态链接的,许多图形的位置发生变化,图形间蕴藏的规律和结论是不变的。熟悉《几何画板》的教师,无一例外会用《几何画板》来演示“圆幂定理”,即相交弦定理→割线定理→切割线定理→切线长定理,鼠标一动,结论立现,效果相当好。其实象“垂经
8、定理”、“圆心角、弧、弦、弦的弦心距关
此文档下载收益归作者所有