欢迎来到天天文库
浏览记录
ID:36104996
大小:2.67 MB
页数:38页
时间:2019-05-05
《菱形的定义、性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§19.2.2菱形的定义、性质菱形情景创设前面我们学习了平行四边形和矩形,知道了如果平行四边形有一个角是直角时,成为什么图形?(矩形,由角变化得到)如果从边的角度,将平行四边形特殊化,又会得到什么特殊的四边形呢?有一组邻边相等的平行四边形叫菱形.平行四边形邻边相等菱形在平行四边形中,如果内角大小保持不变,仅改变边的长度,请仔细观察和思考,在这变化过程中,哪些关系没变?哪些关系变了?活动一如果改变了边的长度,使两邻边相等,那么这个平行四边形成为怎样的四边形?相信你能解释!AB=BCABCD四边形ABCD是菱形菱形的性质感受生活让我们一同走进生活中的菱形2000多年前……一把埋藏在
2、地下的古剑,出土时依然寒气逼人,毫无锈蚀,锋利无比,稍一用力,便可将多层白纸划破,剑身上整齐排列着黑色菱形暗花纹——越王勾践剑菱形就在我们身边图片欣赏有同学是这样做的:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?BDAC菱形是轴对称图形探究菱形的性质(2)从图中你能得到哪些结论?并说明理由.提示:从边、角、对角线、面积等方面来探讨(1)观察得到的菱形,它是中心对称图形吗?它是轴对称图形吗?如果是,有几条对称轴?对称轴之间有什么位置关系?菱形是中心对称图形由于平行四边形的对边相等,而菱
3、形的邻边相等,故:菱形的性质2:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。菱形是特殊的平行四边形,具有平行四边形的所有性质.菱形的性质:BDAC菱形的性质1:菱形的四条边都相等。又:已知:菱形ABCD的对角线AC和BD相交于点O,如下图,证明:∵四边形ABCD是菱形ABCDO在△ABD中,又∵BO=DO∴AB=AD(菱形的四条边都相等)∴AC⊥BD,AC平分∠BAD同理:AC平分∠BCD;BD平分∠ABC和∠ADC求证:AC⊥BD;AC平分∠BAD和∠BCD;BD平分∠ABC和∠ADC命题:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;菱形的两条对角线互
4、相平分菱形的两组对边平行且相等边对角线角菱形的性质菱形的四条边相等菱形的两组对角分别相等菱形的邻角互补菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。∵四边形ABCD是菱形∥=∴ADBCABCD∥=∴AB=BC=CD=DAADCBO∴∠DAC=∠BAC∠DCA=∠BCA∠ADB=∠CDB∠ABD=∠CBDAC⊥BD∴OA=OC;OB=OD∴∠DAB=∠DCB∠ADC=∠ABC∴∠DAB+∠ABC=180°【菱形的面积公式】菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形的面积吗?菱形ABCDOES菱形=BC●AE思考:计算菱形的面积除了上式方法外,利用
5、对角线能计算菱形的面积公式吗?ABCD=S△ABD+S△BCD=AC×BDS菱形面积:S菱形=底×高=对角线乘积的一半为什么?大显身手ABCD例1如图,菱形花坛ABCD的边长为20m,∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m)O作业5、11、12习题19.219四边形1、2、P98练习题例1变形DOACB菱形ABCD的周长为16,相邻两角的度数比为1:2.⑴求菱形ABCD的对角线的长;⑵求菱形ABCD的面积.补充例题:已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=1。求(1)∠ABC
6、的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。ABCDEOABCDO如图,在菱形ABCD中,对角线AC、BD相交于点O议一议(2)有哪些特殊的三角形?(1)图中有哪些线段是相等的?哪些角是相 等的?相等的线段:相等的角:等腰三角形:直角三角形:全等三角形:已知四边形ABCD是菱形AB=CD=AD=BCOA=OCOB=OD∠DAB=∠BCD∠ABC=∠CDA∠AOB=∠DOC=∠AOD=∠BOC=90°∠1=∠2=∠3=∠4∠5=∠6=∠7=∠8△ABC△DBC△ACD△ABDRt△AOBRt△BOCRt△CODRt△DOARt△AOB≌Rt△BOC
7、≌Rt△COD≌Rt△DOA△ABD≌△BCD△ABC≌△ACDABCDO12345678学以致用1.已知菱形的周长是12cm,那么它的边长是______.2.菱形ABCD中∠ABC=60度,则∠BAC=_______.3cm60度3、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是()CA.10cmB.7cmC.5cmD.4cmABCDO344.在菱形ABCD中,AE⊥BC,AF⊥CD,E、F分别为BC,CD的中点,那么∠EAF的度数是()A.75°B.60°C.45°D.30°B5
此文档下载收益归作者所有