人教版一次函数教案

人教版一次函数教案

ID:36078719

大小:1.73 MB

页数:26页

时间:2019-05-05

人教版一次函数教案_第1页
人教版一次函数教案_第2页
人教版一次函数教案_第3页
人教版一次函数教案_第4页
人教版一次函数教案_第5页
资源描述:

《人教版一次函数教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十四章一次函数14.1.1变量知识目标:理解变量与函数的概念以及相互之间的关系能力目标:增强对变量的理解情感目标:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的判断教学媒体:多媒体电脑,绳圈教学说明:本节渗透找变量之间的简单关系,试列简单关系式教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.t/m12345s/km新课:问题:(1)每张电影票的售价为10元,如果早场售出票150张,日

2、场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形

3、面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。指出上述问题中的变量和常量。范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(1)银行规定:

4、五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。活动:1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)

5、有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量作业:阅读教材5页,11.1.2函数课题:14.1.2函数知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?周岁1234567891011121

6、3体重(kg)9.311.813.515.416.718.019.621.523.22527.630.232.5信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的关系如图,你能填写下表吗?时间/min012345高度/m新课:问题:(1)如图是某日的气温变化图。①这张图告诉我们哪些信息?②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:波长l(m)30050060010001500频率f(KHz)1000600500300200

7、①这表告诉我们哪些信息?②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。范例:例1判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;活动1:阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。