欢迎来到天天文库
浏览记录
ID:36068344
大小:2.14 MB
页数:29页
时间:2019-05-04
《13.3.1等腰三角形的性质(第2课时).》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等腰三角形的性质一、复习1、什么叫轴对称图形和轴对称?答:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。这条直线叫做对称轴。2、轴对称与轴对称图形的联系和区别是什么?对于两个图形,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称。这条直线就是对称轴。二、复习1、角是轴对称图形吗?对称轴是什么?性质有哪些?答:是,对称轴是角平分线所在的直线角平分线上的点到角两边的距离相等。2、线段是轴对称图形吗?对称轴是什么?性质有哪些呢?答:是,对称轴是它的垂直平分线,线段
2、的垂直平分线到线段的两个端点的距离相等。图片欣赏图片欣赏图片欣赏图片欣赏图片欣赏图片欣赏图片欣赏图片欣赏高速公路都有等腰三角形做一做现在请同学们将刚才所发的等腰三角形对折,使两腰AB、AC重叠在一起,折痕为AD,你能发现什么现象呢?DABC等腰三角形是轴对称图形∠B=∠C等腰三角形两个底角相等简写成“等边对等角”BD=CD,AD为底边上的中线∠ADB=∠ADC,AD为底边上的高线∠BAD=∠CAD,AD为顶角平分线等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合简称“三线合一”·→画出任意一个等腰三角形
3、的底角平分线、腰上的中线和高,看看它们是否重合?不重合!三线合一“三线合一”应该对应等腰三角形的顶角平分线,底边上的中线和底边上的高为什么不一样?填空:在△ABC中,AB=AC,D在BC上,1、如果AD⊥BC,那么∠BAD=∠______,BD=______2、如果∠BAD=∠CAD,那么AD⊥___,BD=____3、如果BD=CD,那么∠BAD=∠_____,AD⊥___,∠ADB=∠_____=___°DCADCDBCCDCADBCADC90同步练习11.等腰三角形是轴对称图形2.等腰三角形两个底角相等,
4、简写成“等边对等角”3.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.简称“三线合一”等腰三角形的三个性质要记得哦!!判断正误(口答)如图,在△ABC中,∵AC=BC,∴∠ADC=∠BDC.(等边对等角)CABD同步练习2“三线合一”是对等腰三角形的顶角平分线、底边上的中线和高而言的“等边对等角”必须在同一个等腰三角形中才成立请注意哦!已知:在△ABC中,AB=AC,∠B=80。求∠C和∠A的度数.例1解:(已知)(等边对等角)(三角形内角和等于 )已知:在△ABC中,AB=AC,∠A=80。求∠
5、C和∠B的度数.解:结论:在等腰三角形中,已知一个角,可以求另外两个角同步练习3∵AB=AC,∴∠C=∠B(等边对等角)∵∠A+∠B+∠C=180。(三角形内角和等于180。)∠A=80。∴∠B=∠C=50。动脑筋70°,70°或40°,100°30°,30°1.等腰三角形一个角为40°,它的另外两个角为________________________2.等腰三角形一个角为120°,它的另外两个角为_________________同步练习41.等腰三角形的底角可以是直角或钝角吗?为什么?同步练习5练习建筑
6、工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什么数学原理?情境创设例2如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。.求∠1和∠ADC的度数.解:∵AB=AC,D是BC边上的中点∠ADC=90°∵∠BAC=180°-30°-30°=120°(三线合一)小结本节课你学到了什么?1、等腰三角形的定义以及相关概念。2、等腰三角形的性质:(2)等腰三角形底边上的中线,底边上的高和顶角平分线互相重合(简称“三线合一”
7、)(1)等腰三角形的两底角相等(简写“等边对等角”)谢谢指导再见!
此文档下载收益归作者所有