资源描述:
《2019春九年级数学下册27相似27.3位似(第2课时)学案(新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.3 位似位似(第2课时)学习目标1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.学习过程一、自主预习1.在前面我们学习了哪些图形的变换?答:2.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2).(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1,B1,C1三点的坐标: . (2)写出△ABC关于x轴对称的△A2B2C2
2、三个顶点A2,B2,C2的坐标: . (3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3,B3,C3三点的坐标: . 二、新知探究【探究1】(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为13,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?归纳总结:位似变换
3、中对应点的坐标的变化规律:【探究2】用另一种方法完成课本P49例题.解:【探究3】在如图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?答:三、尝试应用1.已知△ABO的顶点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F坐标.解:2.如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.解:四、总结反思1.位似变换中对应点坐标的变化规律是什么?答:2.平移、轴对称、旋转和位似四种图形变换有
4、什么不同点?答:评价作业【基础巩固】1.(8分)将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是( )A.将各点的纵坐标乘2,横坐标不变B.将各点的横坐标乘2,纵坐标不变C.将各点的横坐标、纵坐标都乘2D.将各点的纵坐标都减2,横坐标都加22.(8分)如图所示,在平面直角坐标系中,以原点为位似中心,将△AOB扩大为原来的2倍,得到△OA'B'.若点A的坐标是(1,2),则点A'的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)3.(8分)如图所示,在平面直角坐标系中,有两点A(6,
5、3),B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )A.(2,1) B.(2,0)C.(3,3)D.(3,1)4.(8分)在平面直角坐标系中,已知E(-4,2),F(-2,-2),以原点O为位似中心,相似比为12,把△EFO缩小,则点E的对应点E'的坐标是( )A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)5.(8分)如图所示的是△AOB和△COD,它们是位似图形,则△COD与△AOB的相似比是 . 6.
6、(8分)△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),试将△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,则A'点的坐标为 ,B'点的坐标为 . 7.(8分)如图所示,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,点A的坐标为(1,0),则E点的坐标为 . 8.(8分)某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点是 . 9.(8分)如图所示的平面直角坐标系xOy
7、中,点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于A的位似图形,且O'的坐标为(-1,0),则点B'的坐标为 . 10.(12分)如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1∶S△A2B2C2= (不写解答过
8、程,直接写出结果). 11.(16分)如图所示的△ABC中,BC=1,AC=2,∠C=90°.(1)在图(1)中,画△A'B'C',使△A'B'C'∽△ABC,且相似比为2∶1;(2)若将(1)中△A'B'