欢迎来到天天文库
浏览记录
ID:36028033
大小:1.89 MB
页数:46页
时间:2019-05-02
《2018届中考数学复习专题题型(七) 圆的有关计算与证明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、-(2017浙江衢州第19题)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9[来源:学#科#网Z#X#X#K](1)求证:△COD∽△CBE;(2)求半圆O的半径的长[来源:学#科#网Z#X#X#K]:试题解析:(1)∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)在Rt△BEC中,CE=12,BE=9,∴BC==15,∵△COD∽△CBE.--∴,即,解得:r=.考点:1.切线的性质;2.相似三角形的判定与性
2、质.2.(2017山东德州第20题)如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点E.[来源:Zxxk.Com](1)求证:DE是圆O的切线.(2)若AE:EB=1:2,BC=6,求AE的长.(1)如图所示,连接OE,CE∵AC是圆O的直径∴∠AEC=∠BEC=90°∵D是BC的中点∴ED=BC=DC∴∠1=∠2--∵OE=OC∴∠3=∠4∴∠1+∠3=∠2+∠4,即∠OED=∠ACD∵∠ACD=90°∴∠OED=90°,即OE⊥DE又∵E是圆O上的一点∴DE是圆O的切线.考点:圆切线判定定理及相似三角形3.(2017甘肃庆阳第27题)如图,AN是⊙M的直
3、径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.--(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,--∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD
4、是⊙M的切线.考点:切线的判定;坐标与图形性质.4.(2017广西贵港第24题)如图,在菱形中,点在对角线上,且,是的外接圆.(1)求证:是的切线;(2)若求的半径.【答案】(1)证明见解析;(2).(1)连结OP、OA,OP交AD于E,如图,--∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan
5、∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,--∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.考点:切线的判定与性质;菱形的性质;解直角三角形.5.(2017贵州安顺第25题)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求阴影部分的面积.--【答案】(1)证明见解析;(2)4﹣π.(
6、1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中--,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD=BC=,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD==,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE=OB=2,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2××2×2﹣=4﹣π.--考点:切线
7、的判定与性质;扇形面积的计算.6.(2017湖北武汉第21题)如图,内接于,的延长线交于点.(1)求证平分;(2)若,求和的长.【答案】(1)证明见解析;(2);.(2)过点C作CE⊥AB于E∵sin∠BAC=,设AC=5m,则CE=3m∴AE=4m,BE=m在RtΔCBE中,m2+(3m)2=36∴m=,--∴AC=延长AO交BC于点H,则AH⊥BC,且BH=CH=3,过点O作OF⊥AH交AB于点F,∵∠H
此文档下载收益归作者所有