16.1二次根式(2)

16.1二次根式(2)

ID:36014575

大小:240.84 KB

页数:5页

时间:2019-04-29

16.1二次根式(2)_第1页
16.1二次根式(2)_第2页
16.1二次根式(2)_第3页
16.1二次根式(2)_第4页
16.1二次根式(2)_第5页
资源描述:

《16.1二次根式(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、16.1二次根式(2)教学内容1.(a≥0)是一个非负数;2.()2=a(a≥0).教学目标知识与技能目标:理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.过程与方法目标:过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严谨的科学精神,发展学生观察、分析、发现问题的能力.教学重难点关键1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)

2、是一个非负数;用探究的方法导出()2=a(a≥0).教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用; 2、讲练结合法:在例题教学中,引导学生阅读、类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法 通过观察、类比,使学生理解(a≥0)是一个非负数和()2=a(a≥0),形成有效的学习策略。2、阅读的方法 让学生阅读教材及材料,体验一定的阅读方法,提高阅

3、读能力。3、分组讨论法 将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。媒体设计:PPT课件,展台。课时安排:1课时。教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(a≥0)是一个什么数呢?老师点评:(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;(

4、)2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1、计算1.()22.(3)23.()24.()2分析:我们可以直接利用()2=a(a≥0)的结论解题.解:()2=,(3)2=32·()2=32·5=45,()2=,()2=.三、巩固练习计算下列各式的值:()2()2()2()2(4)2四、应用拓展例2、计算1.()2(x≥0)2.()23.()24.()2分析:(1)因为x≥0,所以

5、x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0()2=x+1(2)∵a2≥0,∴()2=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴()2=4x2-12x+9例3、在实数范围内分解下列因式:(1)x2-3(2

6、)x4-4(3)2x2-3分析:(略)五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业一、选择题1.下列各式中、、、、、,二次根式的个数是().A.4B.3C.2D.12.数a没有算术平方根,则a的取值范围是().A.a>0B.a≥0C.a<0D.a=0二、填空题1.(-)2=________.2.已知有意义,那么是一个_______数.三、综合提高题1.计算(1)()2(2)-()2(3)()2(4)(-3)2(5)2.把下列非负数写成一个数的平方的形式:(1)5(2)3.4(3)(4)x(x≥0)3.已

7、知+=0,求xy的值.4.在实数范围内分解下列因式:(1)x2-2(2)x4-93x2-5答案:一、1.B2.C;二、1.32.非负数;三、1.(1)()2=9(2)-()2=-3(3)()2=×6=;(4)(-3)2=9×=6(5)-62.(1)5=()2;(2)3.4=()2;(3)=()2;(4)x=()2(x≥0)3.xy=34=81;4.(1)x2-2=(x+)(x-)(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+)(x-);(3)略板书设计:§16.1.二次根式(2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。