《一次函数的图象(1)》教案1

《一次函数的图象(1)》教案1

ID:35988948

大小:141.50 KB

页数:4页

时间:2019-04-29

《一次函数的图象(1)》教案1_第1页
《一次函数的图象(1)》教案1_第2页
《一次函数的图象(1)》教案1_第3页
《一次函数的图象(1)》教案1_第4页
资源描述:

《《一次函数的图象(1)》教案1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《一次函数的图象(1)》教案教学内容北师大版数学八年级上册一次函数的图象P83-84.教学目标1、了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2、经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3、已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.4、理解一次函数的代数表达式与图象之间的一一对应关系.教学重点初步了解作函数图象的一般步骤:列表、描点、连线.教学难点理解一次函数的代数表达式与图象之间的一一对应关系.教学过程一、创设环境,引入新题Ot(分)S(米)801一天,小明以80米/分的速度

2、去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象.二、画出正比例函数的图像首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.例1请作出正比例函数y=2x的图象.解:列表:y

3、y…-2-1012…y2x…-4-2024…描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x的图象.由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线.通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟正比例函数图象是一条直线.三、动手操作,深化探索做一做(1)作出正比例函数y=3x的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=3x.议一议(1)满足关系式y=3x的x,y所对应的点(x,y)都在正

4、比例函数y=3x的图象上吗?(2)正比例函数y=3x的图象上的点(x,y)都满足关系式y=3x吗?(3)正比例函数y=kx的图象有什么特点?你是怎样理解的?明晰由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x,y所对应的点(x,y)都在正比例函数的图象上;正比例函数的图象上的点(x,y)都满足正比例函数的代数表达式.正比例函数y=kx的图象是一条直线,以后可以称正比例函数y=kx的图象为直线y=kx.议一议既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方

5、法呢?因为”两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2在同一直角坐标系内作出y=x,y=3x,y=-x,y=-4x的图象.解:列表x01y=x01y=3x03y=-x0-y=4x0-4过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象.过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象.过点(0,0)和(1,-)作直线,则这条直线就是y=-x的图象.过点(0,0)和(

6、1,-4)作直线,则这条直线就是y=-4x的图象.议一议上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k>0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k<0时,图象在第二、四象限,y的值随着x值的增大而减小(即从左向右观察图象时,直线是向下倾斜的).请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更

7、快?你是如何判断的?我们发现:越大,直线越靠近y轴.四、巩固练习,深化理解练习1:在同一直角坐标系中分别作出y=x与y=-x的图象.练习2:当时,与的函数解析式为,当时,与的函数解析式为,则在同一直角坐标系中的图象大致为().(A)(B)(C)(D)练习3:对于函数的两个确定的值、来说,当时,对应的函数值与的关系是().A.B.C.D.无法确定五、课时小结本节课我们通过对正比例函数图象的研究,掌握了以下内容:(1)函数与图象之间是一一对应的关系.(2)正比例函数的图象是一条经过原点的直线.(3)作正比例函数图象时,只取原点外的另一个点,就能很

8、快作出.学生通过对本节学习的回顾和小结,对所学知识更清楚,抓住了重点,明确了关键.六、作业布置习题4.3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。