解析几何高考真题-(30544)

解析几何高考真题-(30544)

ID:35958509

大小:1.23 MB

页数:28页

时间:2019-04-28

解析几何高考真题-(30544)_第1页
解析几何高考真题-(30544)_第2页
解析几何高考真题-(30544)_第3页
解析几何高考真题-(30544)_第4页
解析几何高考真题-(30544)_第5页
资源描述:

《解析几何高考真题-(30544)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、--WORD格式--专业资料--可编辑---解析几何高考真题1.【2015高考新课标1,文5】已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则()(A)(B)(C)(D)2.【2015高考重庆,文9】设双曲线的右焦点是F,左、右顶点分别是,过F做的垂线与双曲线交于B,C两点,若,则双曲线的渐近线的斜率为()(A)(B)(C)(D)3.【2015高考四川,文7】过双曲线的右焦点且与x轴垂直的直线交该双曲线的两条渐近线于A、B两点,则

2、AB

3、=()(A)(B)2(C)6(D)44.【2015高考陕西,文3】已知抛物线的准线

4、经过点,则抛物线焦点坐标为()A.B.C.D.5.【2015高考广东,文8】已知椭圆()的左焦点为,则()A.B.C.D.6.【2015高考天津,文5】已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为()(A)(B)(C)(D)7.【2015高考湖南,文6】若双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为()A、B、C、D、8.【2015高考安徽,文6】下列双曲线中,渐近线方程为的是()(A)(B)(C)(D)9.【2015高考湖北,文9】将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则()A.对任意的

5、,B.当时,;当时,C.对任意的,----WORD格式--专业资料--可编辑---D.当时,;当时,10.【2015高考福建,文11】已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A.B.C.D.11.【2015高考新课标1,文16】已知是双曲线的右焦点,P是C左支上一点,,当周长最小时,该三角形的面积为.12.【2015高考浙江,文15】椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是.13.【2015高考北京,文12】已知是双曲线()的一个焦点,则.14.【2015高考上海,文7】抛物线

6、上的动点到焦点的距离的最小值为1,则.15.【2015高考上海,文12】已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为.16.【2015高考山东,文15】过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为.17.【2015高考安徽,文20】设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,满足直线OM的斜率为.(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB.18.【2015高考北京,文20】(本小题满分14分

7、)已知椭圆,过点且不过点的直线与椭圆交于,两点,直线与直线交于点.(Ⅰ)求椭圆的离心率;(Ⅱ)若垂直于轴,求直线的斜率;(Ⅲ)试判断直线与直线的位置关系,并说明理由.19.【2015高考福建,文19】已知点为抛物线的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;----WORD格式--专业资料--可编辑---(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.20.【2015高考湖北,文22】一种画椭圆的工具如图1所示.是滑槽的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且,.当栓子D在滑槽A

8、B内作往复运动时,带动N绕转动,M处的笔尖画出的椭圆记为C.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.21.【2015高考湖南,文20】(本小题满分13分)已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向.(Ⅰ)求的方程;(Ⅱ)若,求直线的斜率.22.【2015高考山东,文21】平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆

9、上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.(ⅰ)求的值;(ⅱ)求面积的最大值.23.【2015高考陕西,文20】如图,椭圆----WORD格式--专业资料--可编辑---经过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.24.【2015高考四川,文20】如图,椭圆E:(a>b>0)的离心率是,点P(0,1)在短轴CD上,且=-1ADBCOxyP(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。