欢迎来到天天文库
浏览记录
ID:35925394
大小:38.27 KB
页数:6页
时间:2019-04-25
《2018_2019学年高中数学阶段质量检测(四)(含解析)新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、阶段质量检测(四)(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等式12+22+32+…+n2=(5n2-7n+4)( )A.n为任何正整数时都成立B.仅当n=1,2,3时成立C.当n=4时成立,n=5时不成立D.仅当n=4时不成立解析:选B 分别用n=1,2,3,4,5验证即可.2.用数学归纳法证明不等式1+++…+<2-(n≥2,n∈N+)时,第一步应验证不等式( )A.1+<2- B.1++<2-C.1+<2-D.1++<2-解析:选A 第一步验证n=2时不等式成立,即1+<2-.3
2、.用数学归纳法证明1+a+a2+…+an+1=(a≠1),在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3解析:选C 左端为n+2项和,n=1时应为三项和,即1+a+a2.4.用数学归纳法证明2n>n2(n∈N+,n≥5)成立时,第二步归纳假设的正确写法是( )A.假设n=k时命题成立B.假设n=k(k∈N+)时命题成立C.假设n=k(k≥5)时命题成立D.假设n=k(k>5)时命题成立解析:选C k应满足k≥5,C正确.5.数列{an}中,已知a1=1,当n≥2时,an-an-1=2n-1,依次计算a2,a3,a4后,猜想an的表达式是(
3、)A.3n-2 B.n2C.3n-1D.4n-3解析:选B 计算出a1=1,a2=4,a3=9,a4=16,可猜想an=n2.6.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线l后,它们的交点个数最多为( )A.f(k)+1B.f(k)+kC.f(k)+k+1D.k·f(k)解析:选B 第k+1条直线与前k条直线都相交且有不同交点时,交点个数最多,此时应比原先增加k个交点.7.用数学归纳法证明34n+1+52n+1(n∈N+)能被8整除时,若n=k时,命题成立,欲证当n=k+1时命题成立,对于34(k+1)+1+52(k+1)+1可变形为( )A.56×34k
4、+1+25(34k+1+52k+1)B.34×34k+1+52×52kC.34k+1+52k+1D.25(34k+1+52k+1)解析:选A 由34(k+1)+1+52(k+1)+1=81×34k+1+25×52k+1+25×34k+1-25×34k+1=56×34k+1+25(34k+1+52k+1).8.已知f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的关系是( )A.f(k+1)=f(k)+(2k+1)2+(2k+2)2B.f(k+1)=f(k)+(k+1)2C.f(k+1)=f(k)+(2k+2)2D.f(k+1)=f(k)+(2k+1)2解析:选A f(k+
5、1)=12+22+32+…+(2k)2+(2k+1)2+[2(k+1)]2=f(k)+(2k+1)2+(2k+2)2,故选A.9.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应该写成( )A.假设当n=k(k∈N+)时,xk+yk能被x+y整除B.假设当n=2k(k∈N+)时,xk+yk能被x+y整除C.假设当n=2k+1(k∈N+)时,xk+yk能被x+y整除D.假设当n=2k-1(k∈N+)时,xk+yk能被x+y整除解析:选D 第k个奇数应是n=2k-1,k∈N+.10.已知f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可
6、推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是( )A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立B.若f(4)≥16成立,则当k≥4时,均有f(k)16=42成立.∴当k≥4时,有f(k)≥k2成立.二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.用数学归纳法证明1+2+3+4+…+n2=(n∈N+
7、),则n=k+1时,左端应为在n=k时的基础上加上____________________.解析:n=k+1时,左端=1+2+3+…+k2+(k2+1)+…+(k+1)2.所以增加了(k2+1)+…+(k+1)2.答案:(k2+1)+…+(k+1)212.设f(n)=…,用数学归纳法证明f(n)≥3,在假设n=k时成立后,f(k+1)与f(k)的关系是f(k+1)=f(k)·___________
此文档下载收益归作者所有