欢迎来到天天文库
浏览记录
ID:35817492
大小:220.66 KB
页数:14页
时间:2019-04-20
《高中数学 计数原理1.1分类加法计数原理与分步乘法计数原理第2课时两个计数原理的综合应用学案新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时 两个计数原理的综合应用学习目标 1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两个计数原理计数.知识点一 两个计数原理的区别与联系分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整知识点二 两个计数原理的应用解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点:(1)合理分类,准确
2、分步:处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分步”的具体标准.分类时需要满足两个条件:①类与类之间要互斥(保证不重复);②总数要完备(保证不遗漏),也就是要确定一个合理的分类标准.分步时应按事件发生的连贯过程进行分析,必须做到步与步之间互相独立,互不干扰,并确保连续性.(2)特殊优先,一般在后:解含有特殊元素、特殊位置的计数问题,一般应优先安排特殊元素,优先确定特殊位置,再考虑其他元素与其他位置,体现出解题过程中的主次思想.类型一 组数问题例1 用0,1,2,3,4五个数字,(1)可以排成多少个三位数字的电话号码?(2)
3、可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?考点 两个计数原理的应用题点 两个原理在排数中的应用解 (1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3
4、种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.引申探究由本例中的五个数字可组成多少个无重复数字的四位奇数?解 完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).反思与感悟 对于组数问题,应掌握以下原则:(1)明确特殊位置或特殊
5、数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.跟踪训练1 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.6考点 两个计数原理的应用题点 两个原理在排数中的应用答案 B解析 由于题目要求是奇数,那么对于此三位数可以分成两种情况;奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),
6、最后百位(2种情况),共12种;如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共有12+6=18(种)情况.故选B.类型二 选(抽)取与分配问题例2 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种B.18种C.37种D.48种考点 抽取(分配)问题题点 抽取(分配)问题答案 C解析 方法一 (直接法)以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的班级去
7、另外三个工厂,其分配方案共有3×3=9(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有3×3×3=27(种).综上所述,不同的分配方案有1+9+27=37(种).方法二 (间接法)先计算3个班级自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即4×4×4-3×3×3=37(种)方案.反思与感悟 解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类
此文档下载收益归作者所有