资源描述:
《2019版高考数学二轮复习专题七解析几何专题对点练22直线与圆及圆锥曲线文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题对点练22 直线与圆及圆锥曲线1.设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.2.(2018全国Ⅱ,文20)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,
2、AB
3、=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.3.在平面直角坐标系xOy中,已知圆O1:(x+1)2+y2=1和O2:(x-1)2+y2=9,动圆P与圆O1外切,与圆O2内切.(1)求圆心P的轨迹E的方程;(2
4、)过A(-2,0)作两条互相垂直的直线l1,l2分别交曲线E于M,N两点,设l1的斜率为k(k>0),△AMN的面积为S,求的取值范围.4.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-y=4相切.(1)求圆O的方程;(2)若圆O上有两点M,N关于直线x+2y=0对称,且
5、MN
6、=2,求直线MN的方程;(3)圆O与x轴相交于A,B两点,圆内的动点P使
7、PA
8、,
9、PO
10、,
11、PB
12、成等比数列,求的取值范围.5.已知点N(-1,0),F(1,0)为平面直角坐标系内两定点,点M是以N为圆心,4为半径的圆上任意一点,线段MF的垂直平分线交MN于点R.(1
13、)点R的轨迹为曲线E,求曲线E的方程;(2)抛物线C的顶点在坐标原点,F为其焦点,过点F的直线l与抛物线C交于A,B两点,与曲线E交于P,Q两点,请问:是否存在直线l使A,F,Q是线段PB的四等分点?若存在,求出直线l的方程;若不存在,请说明理由.6.(2018天津,文19)设椭圆=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,
14、AB
15、=.(1)求椭圆的方程;(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.专题对点练22答案1.解(1)设A
16、(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k==1.(2)由y=,得y'=.设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),
17、MN
18、=
19、m+1
20、.将y=x+m代入y=得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.从而
21、AB
22、=
23、x1-x2
24、=4.由题设知
25、AB
26、=2
27、MN
28、,即4=2(m+1),解得m=7.所以直线AB的方程为y=x+7.2.解(1)由题意得F(1,0),l的方程为y
29、=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以
30、AB
31、=
32、AF
33、+
34、BF
35、=(x1+1)+(x2+1)=;由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.解(1)设动圆P的半径为r,则
36、PO1
37、
38、=r+1,
39、PO2
40、=3-r,所以
41、PO1
42、+
43、PO2
44、=4,所以P的轨迹为椭圆,2a=4,2c=2,所以a=2,c=1,b=,所以椭圆的方程为=1(x≠-2).(2)设点M坐标为(x0,y0),直线l1的方程为y=k(x+2),代入=1,可得(3+4k2)x2+16k2x+16k2-12=0.∵A(-2,0)在椭圆=1上,∴x0×(-2)=,则x0=,∴
45、AM
46、=.同理
47、AN
48、=.所以S=
49、AM
50、·
51、AN
52、=.,令k2+1=t>1,,所以∈(0,6).4.解(1)依题意,圆O的半径r等于原点O到直线x-y=4的距离,即r==2.所以圆O的方程为x2+y
53、2=4.(2)由题意,可设直线MN的方程为2x-y+m=0.则圆心O到直线MN的距离d=,所以+()2=22,即m=±.所以直线MN的方程为2x-y+=0或2x-y-=0.(3)设P(x,y),由题意得A(-2,0),B(2,0).由
54、PA
55、,
56、PO
57、,
58、PB
59、成等比数列,得=x2+y2,即x2-y2=2.因为=(-2-x,-y)·(2-x,-y)=2(y2-1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[-2,0).5.解(1)由题意,
60、RM
61、=
62、RF
63、,∴
64、RF
65、+
66、RN
67、=
68、RM
69、+
70、RN
71、=
72、MN
73、=4>
74、NF
75、,∴R的轨迹是以N,F为
76、焦点的椭圆,a=2,c=1,b=,∴曲线E的方程为=1;(2)抛物