欢迎来到天天文库
浏览记录
ID:35748539
大小:545.43 KB
页数:22页
时间:2019-04-16
《小五数学第21讲:综合复习二(教师版)-黄庄张志焱.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二十一讲综合复习二1.975×935×972×口,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【分析与解】975含有2个质因数5,935含有1个质因数5,972含有2个质因数2.而975×935×972×口的乘积最后4个数都是0.那么,至少需要4个质因数5,4个质因数2.所以,口至少含有1个质因数5,2个质因数2,即最小为5×2×2=20.2.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?【分析与解】4875=3×5×5×5×13,有a×b为4875的约数,且这两个数的和为64.发现39=3×13、25=5×5这两个数的和为64,所
2、以39、25为满足题意的两个数.那么它们的差为39-25=14.评注:由上题可推知,当两个数的和一定时,这两个数越接近,积越大,所以两个和为64的数的乘积最大为32×32=1024,而积最小为1×63=63.而4875在64~1024之间的约数有65,195,325,375,975等.我们再对65,195,325,375,975等一一验证.严格的逐步计算,才不会漏掉满足题意的其他的解.而在本题中满足题意的只有39、25这组数. 3.用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个? 分析与解:用3个2×2正方形和2个3×3正方形可以拼
3、成1个5×6的长方形(见左下图)。用4个5×6的长方形和1个1×1的正方形可以拼成1个11×11的大正形(见右下图)。 上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成11×11的大正方形。那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗? 将11×11的方格网每隔两行染黑一行(见下页右上图)。将2×2或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个。但是,右图中的白格有11×7=77(个),是奇数,矛盾。由此得到,不用1×1的正方形不可能拼成11×
4、11的正方形。 综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形。 4.由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天? 分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少。但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量。 设1头牛1天吃的草为1份。20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草。由“草地上的草可供20
5、头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草 (20+10)×5=150(份)。 由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天。 5.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需多少分钟? 分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解。 旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客
6、,另一部分是开始检票后新来的旅客。 设1个检票口1分钟检票的人数为1份。因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客 (4×30-5×20)÷(30-20)=2(份)。 假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为 (4-2)×30=60(份)或(5-2)×20=60(份)。 同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分)。6.有三块草地,面积
7、分别为5,6和8公顷。草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问:第三块草地可供19头牛吃多少天? 分析与解:例1是在同一块草地上,现在是三块面积不同的草地。为了解决这个问题,只需将三块草地的面积统一起来。 [5,6,8]=120。 因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天。 因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草
此文档下载收益归作者所有