巧用定义求椭圆中四类最值问题 人教版

巧用定义求椭圆中四类最值问题 人教版

ID:35716146

大小:144.25 KB

页数:4页

时间:2019-04-14

巧用定义求椭圆中四类最值问题 人教版_第1页
巧用定义求椭圆中四类最值问题 人教版_第2页
巧用定义求椭圆中四类最值问题 人教版_第3页
巧用定义求椭圆中四类最值问题 人教版_第4页
资源描述:

《巧用定义求椭圆中四类最值问题 人教版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、巧用定义求椭圆中四类最值问题http://www.DearEDU.com聂文喜圆锥曲线的定义既是推导圆锥曲线标准方程的依据,又是用来解决一些问题的重要方法,一般情况下,当问题涉及焦点或准线,且用其它方法不易求解时,可考虑运用定义求解,下面以椭圆为例归纳四类最值问题。一、的最值若A为椭圆内一定点(异于焦点),P是C上的一个动点,F是C的一个焦点,e是C的离心率,求的最小值。例1.已知椭圆内有一点A(2,1),F是椭圆C的左焦点,P为椭圆C上的动点,求的最小值。分析:注意到式中的数值“”恰为,则可由椭圆的第二定义知等

2、于椭圆上的点P到左准线的距离。这种方法在本期《椭圆中减少运算量的主要方法》一文中已经介绍过,这里不再重复,答案为。二、的最值若A为椭圆C内一定点(异于焦点),P为C上的一个动点,F是C的一个焦点,求的最值。例2.已知椭圆内有一点A(2,1),F为椭圆的左焦点,P是椭圆上动点,求的最大值与最小值。解:如图1,设椭圆的右焦点为,可知其坐标为(3,0)图1由椭圆的第一定义得:可知,当P为的延长线与椭圆的交点时,最大,最大值为,当P为的延长线与椭圆的交点时,最小,最小值为。故的最大值为,最小值为。三、的最值若A为椭圆C外

3、一定点,为C的一条准线,P为C上的一个动点,P到的距离为d,求的最小值。例3.已知椭圆外一点A(5,6),为椭圆的左准线,P为椭圆上动点,点P到的距离为d,求的最小值。解:如图2,设F为椭圆的左焦点,可知其坐标为图2根据椭圆的第二定义有:,即可知当P、F、A三点共线且P在线段AF上时,最小,最小值。故的最小值为10。四、椭圆上定长动弦中点到准线距离的最值例4.定长为的线段AB的两个端点分别在椭圆上移动,求AB的中点M到椭圆右准线的最短距离。解:设F为椭圆的右焦点,如图3,作于A”,BB”⊥于B”,MM”⊥于M”图

4、3则当且仅当AB过焦点F时等号成立。故M到椭圆右准线的最短距离为。评注:是椭圆的通径长,是椭圆焦点弦长的最小值,是AB能过焦点的充要条件。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。