欢迎来到天天文库
浏览记录
ID:35674490
大小:31.50 KB
页数:5页
时间:2019-04-10
《初中数学教学论文 在预设与生成的融合中焕发数学课堂的生命活力》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、在预设与生成的融合中焕发数学课堂的生命活力 教育家布鲁姆说过:“人们无法预料教学所产生的成果的全部范围。没有预料不到的成果,教学也就不成为一种艺术了。”教学过程是师生交往、互动的过程,学生不是配合教师上课的配角,而是具有主观能动性的人。课堂教学不应当是一个封闭系统,也不应拘泥于预先设定的固定不变的模式,要鼓励学生互动中的大胆超越和即兴创造。随着学习理论的发展,建构主义已成为新一轮课程改革的理论基础之一,学习被广泛地认为是学生头脑中原有认知结构的重建过程,是一种个性化的生成活动。笔者认为,课堂教学是预设与生成,封闭与开放的矛盾统一体,两者之间的关系是辩证的,是相辅相成的,数学
2、教学需要预设,而精心的预设又必须通过课堂的生成才能实现其价值。因此,必须处理好预设与生成的关系,在精心预设的基础上,针对教学实际进行灵活调整,追求动态生长,从而让数学课堂在预设与生成的融合中焕发生命活力。本文试从一堂公开课说说笔者的一点认识和体会。 一、课前的准备与预设 课题:三角形全等的判定(一)(复习课) 教学目标: 1、知识获取目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。 2、能力培养目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力
3、。 3、情感孕育目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。 教学重、难点:从复杂多变的图形中探究满足定理的条件。 教学方法:以“引导──探究”为主,“启发──讨论”相佐。 教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P——P(三课时);其次,围绕本节课的复习内容,要求每位同学撰写一篇小论文;第三,上课时,先由学生结合论文总结知识要点,然后从P例2展开,通过“连接BC、EF”两次辅助线,让学生寻找全等三角形(为说明方便,把BF、CE交点记为O)。再用“SAS”证明△BEO≌△CFO受挫后,用剪纸的方法发现它们的确重合,为
4、教学“ASA”埋下伏笔。 例2、已知,如图,AB=AC,E、F分别是AB、AC上的点,且AE=AF. 求证:△ABF≌△ACE(省教版初中几何第一册P) 二、课中的生成与处理 在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P的例4”。另一生紧接着说:“作射线AO交BC边于D点,则AD是∠BAC的角
5、平分线,图中有更多的全等三角形。”这时我心中不禁为之一震,我为课前的粗浅设计和公开课上出这样的意外情况而震惊!更为学生的发散思维而折服! 怎么就没有学生站起来说连接EF呢?该如何是好?是用“这两种编法留到课后大家讨论”搪塞过去,按原计划讲完这节课?还是按学生思路探索结论?如果这样探索下去,这节课内容是完成不了的,还会留下“公开课不成功”的评价;如果阻止学生探索,岂不扼杀了学生的求知欲望和创新意识? 这个问题的实质就是当前教学改革中面对的以传授知识为中心,还是以培养能力为中心;以教师为中心,还是以学生为中心;重解题的发展、探索过程,还是重固有知识的运用;是提高学生的
6、整体素质,还是增加学生知识的素质教育问题。换言之,执教者是采取按照事先预设好的思路,把学生一步一步地引向窄小的通道,这种注入式的传统教学模式进行教学,还是采取让学生自主发展、自我探究的这种“设疑——探究——解答”的开放式教学模式进行教学,这也是运用传统教学观,还是现代教学观指导课堂教学的问题。笔者最终选择了后者。 于是我果断地改变了原来的教学设计,肯定和表扬这两个学生的编法,继续探究问题的解决思路。问:“AD为什么是∠BAC的角平分线呢?”问题一放开,学生的思路也开阔了。一学生马上回答:“因为△BCE≌△CBF,所以∠OCB=∠OBC,所以OB=OC”(原来,“等腰三角形的
7、判定”他也自学了!)再利用“SAS”证明△ABO≌△ACO,所以∠BAO=∠CAO。受其启发,另一学生说也可以用“SSS”证明△ABO≌△ACO。这样一来,学生的积极性更高涨了。又有一学生说用“SAS”证明△AEO≌△AFO也可以达到目的。此时,有一学生可能太激动,说:“老师,我要编一题:请问图中有哪些相等的线段、相等的角?”……这节课在热烈的气氛中结束。 三、课后的收获与体会 (一)学生的收获 学生在自学的基础上,把判定定理1内容与等腰三角形性质有机地结合起来,并能迁移到三角形全等的其他判定定理
此文档下载收益归作者所有