资源描述:
《2013年上海市嘉定区中考数学一模试卷(b卷)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2013年上海市嘉定区中考数学一模试卷(B卷)一、选择题(共6小题,每小题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的】1.(4分)(2()13・嘉定区一模)对于线段a、b,如果a:b=2:3,那么下列四个选项一定正确的是()A.2a=3bB.b-a=lC.a+2_2D.a+b_5b+3=3"V=22・(4分)(2013・嘉定区-•模)如图,在直角处标平面内有一点P(3,4),那么OP与x轴正半轴的夹角a的正弦45C.45D.4(4分)(2013・嘉定区一模)已知抛物线x?+b
2、x+c如图所示,那么b、c的取值范围是(3.B.b<0,c>0C.b>0,c<0D.b>0,c>04.(4分)(2()13・嘉定区一模)下列四个命题屮,真命题的个数为()①面积相等的两个直角三角形相似:②周长相等的两个直角三角形相似:③冇一个锐角相等的两个直角三角形相似:④斜边和直角边对应成比例的两个直角三角形相似.A.4B.3C・2D・15.(4分)(2013•嘉定区一模)正多边形的一个内角的度数不可能是()D.150°A.80°B.135°C.144°6.(4分)(2013・嘉定区一模)已知
3、OOi的半径长为2,若002(。2与5不重合)上的点P满足P0i=2,则下列位置关系屮,OO]Moo?不口」能存在的位置关系是()A.相交B.外切C.内切D.外离二、填空题(共12小题,每小题4分,满分48分)7.(4分)(2013*嘉定区一模)如图,在AABC中,DE〃BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=6,BD=8,AE=4,那么CE的长为・4.(4分)(2013・嘉定区一模)已知1创=2,lbl=4,且b与3反向,如果用向量b表示向量3,那么护.5.(4分)(201
4、3・嘉定区一模)如图,飞机在目标B的正上方2000米A处,飞行员测得地面目标C的俯角a=30°,那么地面目标B、C之间的距离为米.(结果保留根号)CB6.(4分)(2013*嘉定区一模)如果关于x的二次歯数y=-3x2-x+m-1的图象经过原点,那么m=.7.(4分)(2013・嘉定区一模)二次函数尸・x2+3x的图象在对称轴右侧的部分是的.8.(4分)(2013*嘉定区一模)二次函数:y=x2+4x+5的対称轴为直线.9.(4分)(2013*嘉定区一模)把抛物线y二(x・l)?+4先向右平移3
5、个单位,再向下平移2个单位,所得抛物线的顶点坐标是.10.(4分)(2013・嘉定区一模)已知OO的半径长为2,点P满足PO=2,那么点P的岂线1与G)O不可能存在的位置关系是(从“相交〃、“相切〃、“相离〃中选择).11.(4分)(2002・乌鲁木齐)正六边形的边心距与半径的比值为.12.(4分)(2013・嘉定区一模)对于平而图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称圆形A被这个圆“覆盖〃.例如图中的三角形被一个圆“覆盖如果边长为1的正六边形被一个半径
6、长为R的圆“覆盖〃,那么R的取值范围为.13.(4分)(2013*嘉定区一模)已知OOi与002相交于点A、B,AB=8,O]O2=2,OOi的半径为5,那么OO?的半径为-14.(4分)(2013*嘉定区一模)如图,弧EF所在的OO的半径长为5,正三角形ABC的顶点A、B分别在半径OE、OF上,点C在弧EF上,ZEOF=6()°,如果AB丄OF,那么这个正三角形的边长为.三、解答题(共7小题,满分78分)19.(10分)(2013・嘉定区一模)计算:cot60°-cos30°-fsin45°+
7、cos60°2cos45°一tan45°20.(10分)(2013・嘉定区一模)如图已知AABC中AB二AC=10,BC=16,矩形DEFG的边已尸在厶ABC的边BC上,顶点D、G分别在AB、AC±,设DE的长为x,矩形DEFG的面积为y,求y关于x的函数关系式,并写出这个函数的定义域.21.(10分)(2013・嘉定区一模)如图,已知点D、E分别在△ABC的边AB和AC上,DE〃BC,AD=-DB,四2边形DBCE的面积等于16.(1)求AABC的面积;向®AE=b,请川3、b表示向量BC.2
8、2.(10分)(2013・嘉定区一模)如图,一条细绳系著一个小球在平面内摆动,已知细绳从悬挂点O到球心的长度OG为50厘米,小球在左、右两个授高位置时(不考虑阻力等其他因素),细绳相应所成的角90。.(1)求小球在最高位置和最低位置时的高度差:(2)联结EG,求ZOGE的余切值.23.(12分)(2013*嘉定区一模)已知:点D是RtAABC的BC边的一个动点(如图),过点D作DE丄AB,垂足为E,点F在AB边上(点F与点B不重合),11.满足FE=BE,联结CF、DF.(1)当DF平分ZCFB