1、实用标准文案第5练 如何让“线性规划”不失分[题型分析·高考展望] “线性规划”是高考每年必考的内容,主要以选择题、填空题的形式考查,题目难度大多数为低、中档,在填空题中出现时难度稍高.二轮复习中,要注重常考题型的反复训练,注意研究新题型的变化点,争取在该题目上做到不误时,不丢分.体验高考1.(2015·天津)设变量x,y满足约束条件则目标函数z=x+6y的最大值为( C )A.3B.4C.18D.40解析 画出约束条件的可行域如图中阴影部分,作直线l:x+6y=0,平移直线l可知,直线l过点A时,目标函数z=x+6y取得最大值,易得A(0,3),所以zm
2、ax=0+6×3=18,选C.2.(2015·陕西)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )甲乙原料限额A3212B128A.12万元B.16万元C.17万元D.18万元解析 设甲,乙的产量分别为x吨,y吨,由已知可得目标函数z=3x+4y,线性约束条件表示的可行域如图中阴影部分所示:可得目标函数在点A处取到最大值.由得A(2,3).则zmax=3×2+4×3=18(万元).3.(2016·山东)若变量x
3、,y满足则x2+y2的最大值是( C )A.4B.9C.10D.12解析 满足条件的可行域如图中阴影部分(包括边界),x2+y2是可行域上动点(x,y)到原点(0,0)距离的平方,显然,当x=3,y=-1时,x2+y2取最大值,最大值为10.故选C.4.(2016·浙江)若平面区域夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( B )A.B.C.D.解析 已知不等式组所表示的平面区域如图所示的阴影部分,文档实用标准文案由解得A(1,2),由解得B(2,1).由题意可知,当斜率为1的两条直线分别过点A和点B时,两直线的距离最小,即
4、AB
5、
6、==.5.(2015·课标全国Ⅱ)若x,y满足约束条件则z=x+y的最大值为____________.解析 画出约束条件表示的可行域如图中阴影部分(△ABC)所示:作直线l0:x+y=0,平移l0到过点A的直线l时,可使直线y=-x+z在y轴上的截距最大,即z最大,解得即A,故z最大=1+=.高考必会题型题型一 已知约束条件,求目标函数的最值例1 (2016·北京)若x,y满足则2x+y的最大值为( C )A.0B.3C.4D.5解析 不等式组表示的可行域如图中阴影部分所示.令z=2x+y,则y=-2x+z,作直线2x+y=0并平移,当直线过点A时,截距