中考数学专题训练:定值和最值问题解析汇报版

中考数学专题训练:定值和最值问题解析汇报版

ID:34943419

大小:415.44 KB

页数:8页

时间:2019-03-14

中考数学专题训练:定值和最值问题解析汇报版_第1页
中考数学专题训练:定值和最值问题解析汇报版_第2页
中考数学专题训练:定值和最值问题解析汇报版_第3页
中考数学专题训练:定值和最值问题解析汇报版_第4页
中考数学专题训练:定值和最值问题解析汇报版_第5页
资源描述:

《中考数学专题训练:定值和最值问题解析汇报版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实用标准定值问题解1、如图,在平面直角坐标系O中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=.(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的

2、值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC==4,∴OC=OP+PC=4+4=8。又∵矩形AOCD,A(0,4),∴D(8,4)。t的取值范围为:0<t<4。(2)结论:△AEF的面积S不变化。∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC。∴,即,解得CE=。由翻折变换的性质可知:DF=DQ=4-t,则CF=CD+DF=8-t。S=S梯形AOCF+S△FCE-S△AOE=(OA+CF)•OC+CF•CE-OA•OE=[4

3、+(8-t)]×8+(8-t)•-×4×(8+)。化简得:S=32为定值。所以△AEF的面积S不变化,S=32。(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF。由PQ∥AF可得:△CPQ∽△DAF。文档实用标准∴CP:AD=CQ:DF,即8-2t:8=t:4-t,化简得t2-12t+16=0,解得:t1=6+2,t2=。由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去。∴当t=秒时,四边形APQF是梯形。2、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上

4、滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.【答案】解:(1)证明:如图,连接AC∵四边形ABCD为菱形,∠BAD=120°,∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,∴∠BAE=∠FAC。∵∠BAD=120°,∴∠ABF=60°。∴△ABC和△ACD为等边三角形。∴∠ACF=60°,AC=AB。∴∠ABE=∠AFC。∴在△ABE和△ACF中,

5、∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,∴△ABE≌△ACF(ASA)。∴BE=CF。(2)四边形AECF的面积不变,△CEF的面积发生变化。理由如下:由(1)得△ABE≌△ACF,则S△ABE=S△ACF。∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值。作AH⊥BC于H点,则BH=2,。由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.文档实用标准故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,

6、则此时△CEF的面积就会最大.∴S△CEF=S四边形AECF﹣S△AEF。∴△CEF的面积的最大值是。(二)由运动产生的线段和差问题(最值问题)1、如图所示,已知A,B为反比例函数图像上的两点,动点P在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是【】A.B.C.D.【答案】D。【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。【分析】∵把A,B分别代入反比例函数得:y1=2,y2=,∴A(,2),B(2,)。∵在△ABP中,由三角形的三边关系定理得:

7、AP-BP

8、<AB,∴延长AB交x轴于P′,当P

9、在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大。设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:。∴直线AB的解析式是。当y=0时,x=,即P(,0)。故选D。2、如图,抛物线l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C(0,﹣3).将抛物线l沿y轴翻折得抛物线l1.(1)求l1的解析式;(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;文档实用标准【答案】解:(1)如图1,设经翻折后,点A.B的对应点分别为A1、B1,依题意,由翻折变换的性质可知A1(3,0),B

10、1(﹣1,0),C点坐标不变,∴抛物线l1经过A1(3,0),B1(﹣1,0),C(0,﹣3)三点,设抛物线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。