Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf

Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf

ID:34890823

大小:391.35 KB

页数:26页

时间:2019-03-13

Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf_第1页
Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf_第2页
Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf_第3页
Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf_第4页
Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf_第5页
资源描述:

《Bessis and Reiner---Cyclic sieving of noncrossing partitions for complex reflection groups.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Ann.Comb.15(2011)197–222AnnalsofCombinatoricsDOI10.1007/s00026-011-0090-9PublishedonlineMay15,2011©SpringerBaselAG2011CyclicSievingofNoncrossingPartitionsforComplexReflectionGroupsDavidBessis1andVictorReiner2∗1DMA-Ecolenormalesup´´erieure,45rued’Ulm,75230Pariscedex

2、05,Francedavid.bessis@ens.fr2SchoolofMathematics,UniversityofMinnesota,Minneapolis,MN55455,USAreiner@math.umn.eduReceivedJuly28,2008MathematicsSubjectClassification:20F55,51F15Abstract.Weproveaninstanceofthecyclicsievingphenomenon,occurringinthecontextofnoncrossing

3、parititionsforwell-generatedcomplexreflectiongroups.Keywords:complexreflectiongroup,unitaryreflectiongroup,noncrossingpartition,cyclicsievingphenomenon,rationalCherednikalgebra1.IntroductionOurgoalisTheorem1.1below,whoseterminologyisexplainedbrieflyhere,andmorefullyin

4、thenextsection.LetV=CnandletW⊂GL(V)beafiniteirreduciblecomplexreflectiongroup,thatis,WisgeneratedbyitssetRofreflections.ShephardandTodd[30]classi-fiedsuchgroups,andusedthistoshowthatwhenWactsonthesymmetricalgebraS:=Sym(V∗),itsinvariantsubringSWisitselfapolynomialalgeb

5、ra,generatedbyhomogeneouspolynomialsf1,...,fnwhosedegreesd1≤d2≤···≤dnareuniquelydetermined;thiswasalsoprovenwithoutusingtheclassificationbyChevalley[14].WewillassumefurtherthatWiswell-generatedinthesensethatitcanbegener-atedbynofitsreflections.DefinetheCoxeternumberh

6、:=dnandtheW-q-Catalannumbern[h+di]qCat(W,q):=∏,(1.1)[di]qi=12n−1qn−1where[n]q:=1+q+q+···+q=.LetcbearegularelementofWintheq−1senseofSpringer[33],oforderh;sucharegularelementoforderhwillexistbecauseWiswell-generated;seeSubsection2.3.Inotherwords,chasaneigenvectorv∈V

7、∗SecondauthorsupportedbyNSFgrantDMS–9877047.198D.BessisandV.Reinerfixedbynoneofthereflections,andwhosec-eigenvalueζhisaprimitivehthrootofunity.LetNC(W):=w∈W:−1R(w)+Rwc=n,(1.2)whereRistheabsolutelengthfunctionR(w):=min{:w=r1r2···rforsomeri∈R}.(1.3)Theinitia

8、ls“NC”inNC(W)aremotivatedbythespecialcasewhereWistheWeylgroupoftypeAn−1,andthesetNC(W)bijectswiththenoncrossingpartitionsof{1,2,...,n};seeSubsection2.1b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。