整式乘法与因式分解2010.7.25

整式乘法与因式分解2010.7.25

ID:34772729

大小:151.99 KB

页数:8页

时间:2019-03-10

整式乘法与因式分解2010.7.25_第1页
整式乘法与因式分解2010.7.25_第2页
整式乘法与因式分解2010.7.25_第3页
整式乘法与因式分解2010.7.25_第4页
整式乘法与因式分解2010.7.25_第5页
资源描述:

《整式乘法与因式分解2010.7.25》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、整式乘除与因式分解教学目标:1.经历探索整式运算法则和因式分解方法的过程,体会数学知识之间的内在联系.2.了解整数指数幂的意义和整数指数幂的运算性质;了解因式分解的意义及其与整式乘法之间的关系,体会事物之间可以相互转化的思想.3.会进行简单的整式乘除运算;会用提公因式法、公式法进行因式分解.4.会推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2;了解公式的几何背景,并能利用公式进行简单的计算及其逆向变形.5.经历观察、思考、交流、探究等数学活动过程,体验解决问题的策略,进一步发展学生归纳、类比、概括能力,发展学生有条理地思考与表达能力.

2、教学重点及难点:教学重点:整式的乘除法和因式分解,特别是作为乘、除运算基础的是幂的运算.教学难点:充分理解并掌握幂的运算性质.课堂教学:1、内容整理:2、主要知识回顾:幂的运算性质:am·an=am+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.=amn(m、n为正整数)幂的乘方,底数不变,指数相乘.(n为正整数)积的乘方等于各因式乘方的积.=am-n(a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1(a≠0)任何一个不等于零的数的零指数幂都等于l.负指数幂的概念:a-p=(a≠0,p是正整数)任何一个不等于零的数

3、的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.也可表示为:(m≠0,n≠0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

4、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.4、因式分解概述  定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。  意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等

5、数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。  分解因式与整式乘法互为逆变形。因式分解的方法  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法等。  注意三原则  1分解要彻底  2最后结果只有

6、小括号  3最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))基本方法⑴提公因式法  各项都含有的公共的因式叫做这个多项式各项的公因式。  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。  

7、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。  例如:-am+bm+cm=-m(a-b-c);  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。  注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。  平方差公式:a2-b2=(a+b)(a-b);  完全平方公式:a2±2ab+b2=(a±b)2;  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。