函数作业课概念与性质

函数作业课概念与性质

ID:34701071

大小:266.00 KB

页数:3页

时间:2019-03-09

函数作业课概念与性质_第1页
函数作业课概念与性质_第2页
函数作业课概念与性质_第3页
资源描述:

《函数作业课概念与性质》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、南京学尔思教育咨询有限公司常州分公司教师教案学生朱振华年级高一科目数学班主任王瑜日期2011.7.16时段13-15辅导老师王鑫课时2教学内容函数的定义与性质复习课(一)教学目标理解并掌握函数的定义与性质重难点函数的定义域与值域的求解方法教案一、函数的定义映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f:A→B,f表示对应法则,b=f(a)。若A中不同元素的象也不同,且B中每一个元素都有原象与之对应,则称从A到B的映射为一一映射。1.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)

2、

3、x∈A}为值域。2.函数的三要素:定义域,值域,对应法则.从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。3.函数定义域的求法:列出使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.注:求函数定义域是通过解关于自变量的不等式(组)来实现的。函数定义域是研究函数性质的基础和前提。函数对应法则通常表现为表格,解析式和图象。4.函数值域的求法:①配方法(二次或四次);②判别式法;③反函数法(反解法);④换元法(

4、代数换元法);⑤不等式法;⑥单调函数法.注:⑴求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便.⑵常用函数的值域,这是求其他复杂函数值域的基础。①函数的值域为R;②二次函数当时值域是,当时值域是];③反比例函数的值域为;④指数函数的值域为;⑤对数函数的值域为R;⑥函数的值域为[-1,1];函数,的值域为R;二、函数的性质函数的单调区间可以是整个定义域,也可以是定义域的一部分.对于具体的函数来说可能有单调区间,也可能没有单调区间,如果

5、函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在上为减函数单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。判断函数单调性的方法:①定义法(作差比较和作商比较);②图象法;③单调性的运算性质(实质上是不等式性质);④复合函数单调性判断法则;⑤导数法(适用于多项式函数)函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。1.⑴偶函数:.设()为偶函数上一点,则()也是图象上一点.⑵偶函数的判定:两个条件同时满足①定义域一定要关于轴对称,例如:在上不是偶函数.②满足,或,若时,.2.⑴奇函数:.设

6、()为奇函数上一点,则()也是图象上一点.⑵奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:在上不是奇函数.②满足,或,若时,.注:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如,(f(x)≠0).课后作业函数性质练习题一页教学效果分析作业情况:掌握情况:南京学尔思教育咨询有限公司常州分公司教师教案学生年级科目班主任日期时段辅导老师课时教学内容教学目标重难点教案课后作业教学效果分析作业情况:掌握情况:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。