Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf

Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf

ID:34585674

大小:1.28 MB

页数:10页

时间:2019-03-08

Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf_第1页
Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf_第2页
Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf_第3页
Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf_第4页
Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf_第5页
资源描述:

《Wind Power Forecasts Using Gaussian Processes and NumericalWeather Prediction.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、656IEEETRANSACTIONSONPOWERSYSTEMS,VOL.29,NO.2,MARCH2014WindPowerForecastsUsingGaussianProcessesandNumericalWeatherPredictionNiyaChen,ZhengQian,IanT.Nabney,andXiaofengMengAbstract—Sincewindattheearth’ssurfacehasanintrinsicallyapproachesforshort-termwindpowerforecasting:p

2、hysicalnu-complexandstochasticnature,accuratewindpowerforecastsaremericalweatherprediction(NWP)models,statisticalmodelsnecessaryforthesafeandeconomicuseofwindenergy.Inthisbasedpurelyonhistoricaldata,andstatisticalmodelswithNWPpaper,weinvestigatedacombinationofnumericand

3、probabilisticdataasadditionalexogenousinputs.Physicalmodelshavead-models:aGaussianprocess(GP)combinedwithanumericalweatherprediction(NWP)modelwasappliedtowind-powerfore-vantagesoverlongerhorizons(fromseveralhourstodozenscastinguptoonedayahead.First,thewind-speeddatafrom

4、NWPofhours),becausetheyinclude(3-D)spatialandtemporalfac-wascorrectedbyaGP,then,asthereisalwaysadefinedlimitontorsinafullfluid-dynamicsmodeloftheatmosphere.However,powergeneratedinawindturbineduetotheturbinecontrollingsuchmodelshavelimitations,suchasthelimitedobservations

5、etstrategy,windpowerforecastswererealizedbymodelingtheforcalibration(aseriousissuegiventheextremelylargenumberrelationshipbetweenthecorrectedwindspeedandpoweroutputusingacensoredGP.Tovalidatetheproposedapproach,threeofvariablesinthesemodels),therelativelylimitedspatialr

6、eso-real-worlddatasetswereusedformodeltrainingandtesting.lutionpossibleoversuchawidearea(typicallythewholeearth),Theempiricalresultswerecomparedwithseveralclassicalwindandtheimpossibilityofaccountingforlocaltopography[5].forecastmodels,andbasedonthemeanabsoluteerror(MAE

7、),Statisticalmodelswhichuseonlyhistoricalwindspeedandtheproposedmodelprovidesaround9%to14%improvementpowerdataanddonotincludeanyexplicitmodelofthephys-inforecastingaccuracycomparedtoanartificialneuralnetwork(ANN)model,andnearly17%improvementonathirddataseticalprocessesha

8、vebeendevelopedbasedonsinglemodelsorwhichisfromanewly-builtwindfarmforwhichthereisalimitedhybridsofseveralmeth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。