欢迎来到天天文库
浏览记录
ID:39994596
大小:1.19 MB
页数:55页
时间:2019-07-16
《(2006 ppt)Advances in Gaussian Processes》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AdvancesinGaussianProcessesTutorialatNIPS2006inVancouverCarlEdwardRasmussenMaxPlanckInstituteforBiologicalCybernetics,TübingenDecember4th,2006Rasmussen(MPIforBiologicalCybernetics)AdvancesinGaussianProcessesDecember4th,20061/55ThePredictionProblem420400?380360concentr
2、ation,ppm2340CO3201960198020002020yearRasmussen(MPIforBiologicalCybernetics)AdvancesinGaussianProcessesDecember4th,20062/55ThePredictionProblem420400380360concentration,ppm2340CO3201960198020002020yearRasmussen(MPIforBiologicalCybernetics)AdvancesinGaussianProcessesDe
3、cember4th,20063/55ThePredictionProblem420400380360concentration,ppm2340CO3201960198020002020yearRasmussen(MPIforBiologicalCybernetics)AdvancesinGaussianProcessesDecember4th,20064/55ThePredictionProblem420400380360concentration,ppm2340CO3201960198020002020yearRasmussen
4、(MPIforBiologicalCybernetics)AdvancesinGaussianProcessesDecember4th,20065/55ThePredictionProblemUbiquitousquestions:•Modelfitting•howdoIfittheparameters?•whataboutoverfitting?•ModelSelection•howtoIfindoutwhichmodeltouse?•howsurecanIbe?•Interpretation•whatistheaccuracyofth
5、epredictions?•canItrustthepredictions,evenif•...Iamnotsureabouttheparameters?•...Iamnotsureofthemodelstructure?Gaussianprocessessolvesomeoftheabove,andprovideapracticalframeworktoaddresstheremainingissues.Rasmussen(MPIforBiologicalCybernetics)AdvancesinGaussianProcess
6、esDecember4th,20066/55OutlinePartI:foundationsPartII:advancedtopics•WhatisaGaussianprocess•Example•fromdistributiontoprocess•priorsoverfunctions•distributionoverfunctions•hierarchicalpriorsusing•themarginalizationpropertyhyperparameters•Inference•learningthecovariance
7、function•Bayesianinference•posterioroverfunctions•Approximatemethodsfor•predictivedistributionclassification•marginallikelihood•GaussianProcesslatentvariable•Occam’sRazormodels•automaticcomplexitypenalty•SparsemethodsRasmussen(MPIforBiologicalCybernetics)AdvancesinGaus
8、sianProcessesDecember4th,20067/55TheGaussianDistributionTheGaussiandistributionisgivenby p(x
9、µ,Σ)=N(µ,Σ)=(2π)−D/2
10、Σ
11、−1/2exp
此文档下载收益归作者所有