gaussian_processes_in_machine_learning

gaussian_processes_in_machine_learning

ID:5398903

大小:2.99 MB

页数:35页

时间:2017-11-10

gaussian_processes_in_machine_learning_第1页
gaussian_processes_in_machine_learning_第2页
gaussian_processes_in_machine_learning_第3页
gaussian_processes_in_machine_learning_第4页
gaussian_processes_in_machine_learning_第5页
资源描述:

《gaussian_processes_in_machine_learning》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、GaussianProcessesinMachineLearningGerhardNeumann,SeminarF,WS05/06OutlineofthetalkGaussianProcesses(GP)[ma05,rs03]BayesianInferenceGPforregressionOptimizingthehyperparametersApplicationsGPLatentVariableModels[la04]GPDynamicalModels[wa05]GP:IntroductionG

2、aussianProcesses:Definition:AGPisacollectionofrandomvariables,anyfinitenumberofwhichhavejointGaussianDistributionDistributionoverfunctions:GaussianDistribution:overvectorsNonlinearRegression:XN…DataPointstN…TargetVectorInferNonlinearparameterizedfuncti

3、on,y(x;w),predictvaluestN+1fornewdatapointsxN+1E.g.FixedBasisFunctionsBayesianInferenceoftheparametersPosteriorpropabilityoftheparameters:Probabilitythattheobserveddatapointshavebeengeneratedbyy(x;w)OftenseparableGaussiandistributionisusedEachdatapoint

4、tidifferingfromy(xi;w)byadditivenoisepriorsontheweightsPredictionismadebymarginalizingovertheparametersIntegralishardtocalculateSampleparameterswfromthedistributionwithMarkovchainMonteCarlotechniquesOrApproximatewithaGaussianDistributionBayesianInferen

5、ce:SimpleExampleGP:isaGaussiandistributionExample:HFixedBasisfunctions,NinputpointsPrioronw:Calculatepriorfory(x):Priorforthetargetvaluesgeneratedfromy(x;w)+noise:CovarianceMatrix:CovarianceFunctionPredictingDataInfertN+1giventN:Simple,becausecondition

6、aldistributionisalsoaGaussianUseincrementalformofWecanrewritethisequationUsepartitionedinverseequationstogetfromPredictivemean:UsuallyusedfortheinterpolationUncertaintyintheresult:PredictingDataBayesianInference:SimpleExampleHowdoesthecovariancematrixl

7、ooklike?UsuallyN>>H:Qhasnotfullrank,butChas(duetotheadditionofI)SimpleExample:10RBFfunctions,uniformlydistributedovertheinputspaceBayesianInference:SimpleExampleAssumeuniformlyspacedbasisfunctions,SolutionoftheintegralLimitsofintegrationtoMoregeneralfo

8、rmGaussianProcessesOnlyCNneedstobeinverted(O(N³))PredictiondependentirelyonCandtheknowntargetstNGaussianProcesses:CovariancefunctionsMustgenerateanon-negativedefinitecovariancematrixforanysetofpointsHyperparametersofCSomeExamples:RBF:Li

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签