elements of statistical learning (2008)

elements of statistical learning (2008)

ID:34575911

大小:12.33 MB

页数:763页

时间:2019-03-08

elements of statistical learning (2008)_第1页
elements of statistical learning (2008)_第2页
elements of statistical learning (2008)_第3页
elements of statistical learning (2008)_第4页
elements of statistical learning (2008)_第5页
资源描述:

《elements of statistical learning (2008)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ThisispagevPrinter:OpaquethisToourparents:ValerieandPatrickHastieVeraandSamiTibshiraniFlorenceandHarryFriedmanandtoourfamilies:Samantha,Timothy,andLyndaCharlie,Ryan,Julie,andCherylMelanie,Dora,Monika,andIldikoviThisispageviiPrinter:OpaquethisPrefacetotheSecondEdition

2、InGodwetrust,allothersbringdata.–WilliamEdwardsDeming(1900-1993)1WehavebeengratifiedbythepopularityofthefirsteditionofTheElementsofStatisticalLearning.This,alongwiththefastpaceofresearchinthestatisticallearningfield,motivatedustoupdateourbookwithasecondedition.Wehaveadd

3、edfournewchaptersandupdatedsomeoftheexistingchapters.Becausemanyreadersarefamiliarwiththelayoutofthefirstedition,wehavetriedtochangeitaslittleaspossible.Hereisasummaryofthemainchanges:1OntheWeb,thisquotehasbeenwidelyattributedtobothDemingandRobertW.Hayden;howeverProfe

4、ssorHaydentoldusthathecanclaimnocreditforthisquote,andironicallywecouldfindno“data”confirmingthatDemingactuallysaidthis.viiiPrefacetotheSecondEditionChapterWhat’snew1.Introduction2.OverviewofSupervisedLearning3.LinearMethodsforRegressionLARalgorithmandgeneralizationsof

5、thelasso4.LinearMethodsforClassificationLassopathforlogisticregression5.BasisExpansionsandRegulariza-AdditionalillustrationsofRKHStion6.KernelSmoothingMethods7.ModelAssessmentandSelectionStrengthsandpitfallsofcross-validation8.ModelInferenceandAveraging9.AdditiveModel

6、s,Trees,andRelatedMethods10.BoostingandAdditiveTreesNewexamplefromecology;somematerialsplitofftoChapter16.11.NeuralNetworksBayesianneuralnetsandtheNIPS2003challenge12.SupportVectorMachinesandPathalgorithmforSVMclassifierFlexibleDiscriminants13.PrototypeMethodsandNeares

7、t-Neighbors14.UnsupervisedLearningSpectralclustering,kernelPCA,sparsePCA,non-negativematrixfactorizationarchetypalanalysis,nonlineardimensionreduction,Googlepagerankalgorithm,adirectapproachtoICA15.RandomForestsNew16.EnsembleLearningNew17.UndirectedGraphicalModelsNew

8、18.High-DimensionalProblemsNewSomefurthernotes:•Ourfirsteditionwasunfriendlytocolorblindreaders;inparticular,wetendedtofavorred/gree

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。