the elements of statistical learning (data mining, inference, and prediction)

the elements of statistical learning (data mining, inference, and prediction)

ID:14846396

大小:12.69 MB

页数:764页

时间:2018-07-30

the elements of statistical learning (data mining, inference, and prediction)_第1页
the elements of statistical learning (data mining, inference, and prediction)_第2页
the elements of statistical learning (data mining, inference, and prediction)_第3页
the elements of statistical learning (data mining, inference, and prediction)_第4页
the elements of statistical learning (data mining, inference, and prediction)_第5页
资源描述:

《the elements of statistical learning (data mining, inference, and prediction)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Hastie•Tibshirani•FriedmanSpringerSeriesinStatisticsSpringerSeriesinStatisticsTrevorHastieTrevorHastie•RobertTibshirani•JeromeFriedmanRobertTibshiraniTheElementsofStaticticalLearningJeromeFriedmanDuringthepastdecadetherehasbeenanexplosionincomputationandinformationtech-nology

2、.Withithavecomevastamountsofdatainavarietyoffieldssuchasmedicine,biolo-gy,finance,andmarketing.Thechallengeofunderstandingthesedatahasledtothedevel-TheElementsofopmentofnewtoolsinthefieldofstatistics,andspawnednewareassuchasdatamining,machinelearning,andbioinformatics.Manyoft

3、hesetoolshavecommonunderpinningsbutTheElementsofStatisticalLearningareoftenexpressedwithdifferentterminology.Thisbookdescribestheimportantideasintheseareasinacommonconceptualframework.Whiletheapproachisstatistical,theemphasisisonconceptsratherthanmathematics.Manyexamplesaregi

4、ven,withaliberalStatisticalLearninguseofcolorgraphics.Itshouldbeavaluableresourceforstatisticiansandanyoneinterestedindatamininginscienceorindustry.Thebook’scoverageisbroad,fromsupervisedlearning(prediction)tounsupervisedlearning.Themanytopicsincludeneuralnetworks,supportvect

5、ormachines,classificationtreesandboosting—thefirstcomprehensivetreatmentofthisDataMining,Inference,andPredictiontopicinanybook.Thismajorneweditionfeaturesmanytopicsnotcoveredintheoriginal,includinggraphicalmodels,randomforests,ensemblemethods,leastangleregression&pathalgorith

6、msforthelasso,non-negativematrixfactorization,andspectralclustering.Thereisalsoachapteronmethodsfor“wide”data(pbiggerthann),includingmultipletestingandfalsediscoveryrates.TrevorHastie,RobertTibshirani,andJeromeFriedmanareprofessorsofstatisticsatSecondEditionStanfordUniversity

7、.Theyareprominentresearchersinthisarea:HastieandTibshiranidevelopedgeneralizedadditivemodelsandwroteapopularbookofthattitle.Hastieco-developedmuchofthestatisticalmodelingsoftwareandenvironmentinR/S-PLUSandinventedprincipalcurvesandsurfaces.Tibshiraniproposedthelassoandisco-au

8、thoroftheverysuccessfulAnIntroductiontotheBootstrap.Friedmanistheco-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。