the elements of statistical learning-data mining, inference, and prediction

the elements of statistical learning-data mining, inference, and prediction

ID:30481124

大小:26.61 MB

页数:759页

时间:2018-12-30

the elements of statistical learning-data mining, inference, and prediction_第1页
the elements of statistical learning-data mining, inference, and prediction_第2页
the elements of statistical learning-data mining, inference, and prediction_第3页
the elements of statistical learning-data mining, inference, and prediction_第4页
the elements of statistical learning-data mining, inference, and prediction_第5页
资源描述:

《the elements of statistical learning-data mining, inference, and prediction》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Job#:325659pDate:11-03-2216:24:06Hastie•SpringerSeriesinStatisticsSpringerSeriesinStatistics•TibshiraniFriedmanTrevorHastieTrevorHastie•RobertTibshirani•JeromeFriedmanRobertTibshiraniTheElementsofStatisticalLearningJeromeFriedmanDuringthepastdecadetherehasbeenanex

2、plosionincomputationandinformationtech-nology.Withithavecomevastamountsofdatainavarietyoffieldssuchasmedicine,biolo-gy,finance,andmarketing.Thechallengeofunderstandingthesedatahasledtothedevel-TheElementsofopmentofnewtoolsinthefieldofstatistics,andspawnednewareass

3、uchasdatamining,machinelearning,andbioinformatics.ManyofthesetoolshavecommonunderpinningsbutTheElementsofStatisticalLearningareoftenexpressedwithdifferentterminology.Thisbookdescribestheimportantideasintheseareasinacommonconceptualframework.Whiletheapproachisstati

4、stical,theemphasisisonconceptsratherthanmathematics.Manyexamplesaregiven,withaliberalStatisticalLearninguseofcolorgraphics.Itshouldbeavaluableresourceforstatisticiansandanyoneinterestedindatamininginscienceorindustry.Thebook’scoverageisbroad,fromsupervisedlearning

5、(prediction)tounsupervisedlearning.Themanytopicsincludeneuralnetworks,supportvectormachines,classificationtreesandboosting—thefirstcomprehensivetreatmentofthisDataMining,Inference,andPredictiontopicinanybook.Thismajorneweditionfeaturesmanytopicsnotcoveredintheorig

6、inal,includinggraphicalmodels,randomforests,ensemblemethods,leastangleregressionandpathalgorithmsforthelasso,non-negativematrixfactorization,andspectralclustering.Thereisalsoachapteronmethodsfor“wide”data(pbiggerthann),includingmultipletestingandfalsediscoveryrate

7、s.TrevorHastie,RobertTibshirani,andJeromeFriedmanareprofessorsofstatisticsatSecondEditionStanfordUniversity.Theyareprominentresearchersinthisarea:HastieandTibshiranidevelopedgeneralizedadditivemodelsandwroteapopularbookofthattitle.Hastieco-developedmuchofthestatis

8、ticalmodelingsoftwareandenvironmentinR/S-PLUSandinventedprincipalcurvesandsurfaces.Tibshiraniproposedthelassoandisco-authoroftheverysuccessfulAnIntroduc

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。