[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf

[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf

ID:34567013

大小:538.14 KB

页数:29页

时间:2019-03-08

[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf_第1页
[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf_第2页
[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf_第3页
[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf_第4页
[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf_第5页
资源描述:

《[8] Boosting Algorithms Regularization, prediction and model fitting by Peter B&amp#252;hlmann and Torsten Hothorn.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、StatisticalScience2007,Vol.22,No.4,477505DOI:10.1214/07-STS242©InstituteofMathematicalStatistics,2007BoostingAlgorithms:Regularization,PredictionandModelFittingPeterBühlmannandTorstenHothornAbstract.Wepresentastatisticalperspectiveonboosting.Specialempha-sisis

2、giventoestimatingpotentiallycomplexparametricornonparametricmodels,includinggeneralizedlinearandadditivemodelsaswellasregres-sionmodelsforsurvivalanalysis.Conceptsofdegreesoffreedomandcor-respondingAkaikeorBayesianinformationcriteria,particularlyusefulforregul

3、arizationandvariableselectioninhigh-dimensionalcovariatespaces,arediscussedaswell.Thepracticalaspectsofboostingproceduresforfittingstatisticalmod-elsareillustratedbymeansofthededicatedopen-sourcesoftwarepackagemboost.Thispackageimplementsfunctionswhichcanbeused

4、formodelfit-ting,predictionandvariableselection.Itisflexible,allowingfortheimple-mentationofnewboostingalgorithmsoptimizinguser-specifiedlossfunc-tions.Keywordsandphrases:Generalizedlinearmodels,generalizedadditivemodels,gradientboosting,survivalanalysis,variable

5、selection,software.1.INTRODUCTIONgradientdescentalgorithminfunctionspace,inspiredbynumericaloptimizationandstatisticalestimation.FreundandSchapiresAdaBoostalgorithmforclas-Moreover,Friedman,HastieandTibshirani[33]laidsification[2931]hasattractedmuchattentionint

6、heoutfurtherimportantfoundationswhichlinkedAda-machinelearningcommunity(cf.[76],andtherefer-Boostandotherboostingalgorithmstotheframeworkencestherein)aswellasinrelatedareasinstatisticsofstatisticalestimationandadditivebasisexpansion.[15,16,33].Variousversionso

7、ftheAdaBoostalgo-Intheirterminology,boostingisrepresentedasstage-rithmhaveproventobeverycompetitiveintermsofwise,additivemodeling:thewordadditivedoesnotpredictionaccuracyinavarietyofapplications.Boost-implyamodelfitwhichisadditiveinthecovariatesingmethodshavebe

8、enoriginallyproposedasensem-(seeourSection4),butreferstothefactthatboost-blemethods(seeSection1.1),whichrelyontheprin-ingisanadditive(infact,alinear)combinationofcipleofgeneratingm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。