资源描述:
《[8] Boosting Algorithms Regularization, prediction and model fitting by Peter Bühlmann and Torsten Hothorn.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、StatisticalScience2007,Vol.22,No.4,477505DOI:10.1214/07-STS242©InstituteofMathematicalStatistics,2007BoostingAlgorithms:Regularization,PredictionandModelFittingPeterBühlmannandTorstenHothornAbstract.Wepresentastatisticalperspectiveonboosting.Specialempha-sisis
2、giventoestimatingpotentiallycomplexparametricornonparametricmodels,includinggeneralizedlinearandadditivemodelsaswellasregres-sionmodelsforsurvivalanalysis.Conceptsofdegreesoffreedomandcor-respondingAkaikeorBayesianinformationcriteria,particularlyusefulforregul
3、arizationandvariableselectioninhigh-dimensionalcovariatespaces,arediscussedaswell.Thepracticalaspectsofboostingproceduresforfittingstatisticalmod-elsareillustratedbymeansofthededicatedopen-sourcesoftwarepackagemboost.Thispackageimplementsfunctionswhichcanbeused
4、formodelfit-ting,predictionandvariableselection.Itisflexible,allowingfortheimple-mentationofnewboostingalgorithmsoptimizinguser-specifiedlossfunc-tions.Keywordsandphrases:Generalizedlinearmodels,generalizedadditivemodels,gradientboosting,survivalanalysis,variable
5、selection,software.1.INTRODUCTIONgradientdescentalgorithminfunctionspace,inspiredbynumericaloptimizationandstatisticalestimation.FreundandSchapiresAdaBoostalgorithmforclas-Moreover,Friedman,HastieandTibshirani[33]laidsification[2931]hasattractedmuchattentionint
6、heoutfurtherimportantfoundationswhichlinkedAda-machinelearningcommunity(cf.[76],andtherefer-Boostandotherboostingalgorithmstotheframeworkencestherein)aswellasinrelatedareasinstatisticsofstatisticalestimationandadditivebasisexpansion.[15,16,33].Variousversionso
7、ftheAdaBoostalgo-Intheirterminology,boostingisrepresentedasstage-rithmhaveproventobeverycompetitiveintermsofwise,additivemodeling:thewordadditivedoesnotpredictionaccuracyinavarietyofapplications.Boost-implyamodelfitwhichisadditiveinthecovariatesingmethodshavebe
8、enoriginallyproposedasensem-(seeourSection4),butreferstothefactthatboost-blemethods(seeSection1.1),whichrelyontheprin-ingisanadditive(infact,alinear)combinationofcipleofgeneratingm