nonparametric time series prediction through adaptive model selection

nonparametric time series prediction through adaptive model selection

ID:7297744

大小:156.81 KB

页数:30页

时间:2018-02-10

nonparametric time series prediction through adaptive model selection_第1页
nonparametric time series prediction through adaptive model selection_第2页
nonparametric time series prediction through adaptive model selection_第3页
nonparametric time series prediction through adaptive model selection_第4页
nonparametric time series prediction through adaptive model selection_第5页
资源描述:

《nonparametric time series prediction through adaptive model selection》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、MachineLearning,39,5–34,2000.°c2000KluwerAcademicPublishers.PrintedinTheNetherlands.NonparametricTimeSeriesPredictionThroughAdaptiveModelSelection¤¤RONMEIR†rmeir@ee.technion.ac.ilDepartmentofElectricalEngineering,Technion,Haifa32000,IsraelEditor:LisaHellersteinAbstract.Weconsidertheprobl

2、emofone-stepaheadpredictionfortimeseriesgeneratedbyanunderlyingstationarystochasticprocessobeyingtheconditionofabsoluteregularity,describingthemixingnatureofprocess.Wemakeuseofrecentresultsfromthetheoryofempiricalprocesses,andadapttheuniformconvergenceframeworkofVapnikandChervonenkistoth

3、eproblemoftimeseriesprediction,obtainingfinitesamplebounds.Furthermore,byallowingboththemodelcomplexityandmemorysizetobeadaptivelydeterminedbythedata,wederivenonparametricratesofconvergencethroughanextensionofthemethodofstructuralriskminimizationsuggestedbyVapnik.Allourresultsarederivedfo

4、rgeneralLperrormeasures,andapplytobothexponentiallyandalgebraicallymixingprocesses.Keywords:timeseriesprediction,adaptivemodelselection,structuralriskminimization,mixingprocesses1.IntroductionTheproblemoftimeseriesmodelingandpredictionhasalonghistory,datingbacktothepioneeringworkofYulein

5、1927(Yule,1927).Mostoftheworksincethenuntilthe1970shasbeenconcernedwithparametricapproachestotheproblemwherebyasimple,usuallylinear,modelisfittedtothedata(forareviewofthisapproach,seeforexamplethetext-bookbyBrockwellandDavis(1991)).Whilemanyappealingmathematicalpropertiesoftheparametricap

6、proachhavebeenestablished,ithasbecomeclearovertheyearsthatthelimitationsoftheapproacharerathersevere,intheirimpositionofarigidstructureontheprocess.Oneofthemoreproductivesolutionstothisproblemhasbeentheextensionoftheclassicnonparametricmethodstothecaseoftimeseries(see,forexample,Gy¨orfiet

7、al.(1989)andBosq(1996)forareview).Inthisworkweusethetermparametricmodeltorefertoanymodelwhichimposesaspecificformontheestimatedfunction,whichisexactlyknownuptoafinitenumberofparameters.Nonparametricmodels,onthetheotherhand,donotimposeanystructuralassumptions,andcanmodelany(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。