资源描述:
《nonparametric time series prediction through adaptive model selection》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、MachineLearning,39,5–34,2000.°c2000KluwerAcademicPublishers.PrintedinTheNetherlands.NonparametricTimeSeriesPredictionThroughAdaptiveModelSelection¤¤RONMEIR†rmeir@ee.technion.ac.ilDepartmentofElectricalEngineering,Technion,Haifa32000,IsraelEditor:LisaHellersteinAbstract.Weconsidertheprobl
2、emofone-stepaheadpredictionfortimeseriesgeneratedbyanunderlyingstationarystochasticprocessobeyingtheconditionofabsoluteregularity,describingthemixingnatureofprocess.Wemakeuseofrecentresultsfromthetheoryofempiricalprocesses,andadapttheuniformconvergenceframeworkofVapnikandChervonenkistoth
3、eproblemoftimeseriesprediction,obtainingfinitesamplebounds.Furthermore,byallowingboththemodelcomplexityandmemorysizetobeadaptivelydeterminedbythedata,wederivenonparametricratesofconvergencethroughanextensionofthemethodofstructuralriskminimizationsuggestedbyVapnik.Allourresultsarederivedfo
4、rgeneralLperrormeasures,andapplytobothexponentiallyandalgebraicallymixingprocesses.Keywords:timeseriesprediction,adaptivemodelselection,structuralriskminimization,mixingprocesses1.IntroductionTheproblemoftimeseriesmodelingandpredictionhasalonghistory,datingbacktothepioneeringworkofYulein
5、1927(Yule,1927).Mostoftheworksincethenuntilthe1970shasbeenconcernedwithparametricapproachestotheproblemwherebyasimple,usuallylinear,modelisfittedtothedata(forareviewofthisapproach,seeforexamplethetext-bookbyBrockwellandDavis(1991)).Whilemanyappealingmathematicalpropertiesoftheparametricap
6、proachhavebeenestablished,ithasbecomeclearovertheyearsthatthelimitationsoftheapproacharerathersevere,intheirimpositionofarigidstructureontheprocess.Oneofthemoreproductivesolutionstothisproblemhasbeentheextensionoftheclassicnonparametricmethodstothecaseoftimeseries(see,forexample,Gy¨orfiet
7、al.(1989)andBosq(1996)forareview).Inthisworkweusethetermparametricmodeltorefertoanymodelwhichimposesaspecificformontheestimatedfunction,whichisexactlyknownuptoafinitenumberofparameters.Nonparametricmodels,onthetheotherhand,donotimposeanystructuralassumptions,andcanmodelany(