资源描述:
《Model selection and order determination for time series by information between the past and》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、ModelSelectionandOrderDeterminationforTimeSeriesbyInformationBetweenthePastandtheFutureLeiLi(DepartmentofStatistics,UniversityofCalifornia,BerkeleyCA94720)ZhongjieXie(DepartmentofProbabilityandStatistics,PekingUniversity)TypesetbyAS-TXME12AbstractInthispaper,theinformationbetweenthepasta
2、ndthefutureofaGauss-ianstationarysequenceiscalculatedeitherbyitsspectraldensityorbyitsautocovariances,andisrelatedtotheproblemofmodeltting.Itisdemon-stratedthatthecriterionofminimummutualinformationisthegeneralizationofthatofmaximumentropy.Byemployingtheaboveinformationquantity,wepropos
3、edaprocedure,whichiscalledLICforsimplicity,toobtainconsistentestimateoftheorderoftheBloomeldmodelortheautoregressivemodel.InMonteCarlostudies,weillustratetheLICprocedurebyseveralexamples,andalsoestimatespectraldensityoftimeseriesbytheBloomeldmodelandLICmethod.KeyWordsandPhrases:timeser
4、ies,information,parametricmodels,orderselection.3x1IntroductionThemainpurposeofthispaperistoexhibitsomeapplicationsofthemutualinformation(thatbetweenthepastandthefutureoftimeseries)intheeldsofparametricmodelling.SupposethatxisaGaussianstationaryseries,itiswellknownthatitstentropyH(x)pla
5、ysaveryimportantroleinthemodelttingproblem.Anothertinformationquantity,theinformationbetweenthepastLfx;stgandthesfutureLfx;s>tg,whichwedenotedbyp-finformationforsimplicity,hassalsobeendenedanddiscussedinIbragimovandRozanov(1978).FollowingtheworksofJewellandBloomeld(1983a,1983b),insec
6、tion2ofthepresentpaper,someformulasforcalculatingthep-finformationbyeitherthespectraldensityfunctionortheautocovariancefunctionsareobtainedbytheauthors.InSection3,weconsiderthemodelttingproblemunderthecriterionofminimump-finformationandpresentsomeinterestingresults:1.If;;;,thevalueso
7、ftherstp+1autocoviancefunctions,havebeen01pgiven,thenunderthereferredcriterion,theoptimumttingofxmustbeantAR(p)model,whichcoincideswiththeresultunderthecriterionofmaximumentropy.2..Supposethatxisaregularstationaryseries,thenasshownbySzego,tKolmogorovandKrein,ithasaspect