preventing computational chaos in asynchronous neural networksnew

preventing computational chaos in asynchronous neural networksnew

ID:34524377

大小:283.31 KB

页数:6页

时间:2019-03-07

preventing computational chaos in asynchronous neural networksnew_第1页
preventing computational chaos in asynchronous neural networksnew_第2页
preventing computational chaos in asynchronous neural networksnew_第3页
preventing computational chaos in asynchronous neural networksnew_第4页
preventing computational chaos in asynchronous neural networksnew_第5页
资源描述:

《preventing computational chaos in asynchronous neural networksnew》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Preprint,InternationalConferenceonArtificialIntelligenceApplicationsMalaga,Spain,September2002AIA’02PreventingComputationalChaosinAsynchronousNeuralNetworksJacobBarhenVladimirProtopopescuCenterforEngineeringScienceAdvancedResearchComputingandComputationalSciencesDirectora

2、teOakRidgeNationalLaboratoryOakRidge,TN37831-6355barhenj@ornl.govAbstract.Oneoftheprimaryadvantagesofartificialfromallrequirednodes.Clearly,thistypeofasyn-neuralnetworksistheirinherentabilitytoperformchronicitylimitstheabilityofanetworktoperformmassivelyparallel,nonlinear

3、signalprocessing.massivelyparallel,distributedinformationpro-However,theasynchronousdynamicsunderlyingthecessing.Hereafter,wewillrefertothisregimeasevolutionofsuchnetworksmayoftenleadtothesequentiallyasynchronous.Todate,bothparadigmsemergenceofcomputationalchaos,whichimpe

4、desstillprovidethealgorithmicfoundationofavailabletheefficientretrievalofinformationusuallystoredincomputationalmodels[3-6].thesystem’sattractors.Inthispaper,wediscusstheThetrue(concurrent)computationalasynchronicity,implicationsofchaosinconcurrentasynchronoushowever,impl

5、iesanuncoordinated,system−widecomputation,andprovideamethodologythatactivity.Inthatcontext,thereisastrongmotivationpreventsitsemergence.Ourresultsareillustratedontodevelopalgorithmsthatcanfullyexploitsuchaawidelyusedneuralnetworkmodel.behavior.Itshouldbenoted,however,that

6、asynchronousrelaxationalgorithmshavelongbeenknowntogiverisetocomputationalchaos[10].1.IntroductionInthesequel,wefirstdiscusssomeimplicationsofArtificialneuralnetworksaremassivelyparallel,asynchronouscomputing.Thenweprovideametho-adaptivedynamicalsystems[1].Theirmodelsared

7、ologythatpreventstheemergenceofcomputationalinspiredbythegeneralfeaturesofbiologicalchaostoenableefficientretrievalofinformationnetworks.Insuchnetworks,asynchronousbehaviorstoredinattractorsofthenetwork.Finally,weisprevalent.Itarisesfromdelaysinnervesignalillustrateourres

8、ultsintermsofthewellestablishedpropagation,refractoryperiods,andadaptiveGrossberg−Hopfieldmodel[

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。